版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、矩陣?yán)碚撛诳刂评碚?計算數(shù)學(xué),統(tǒng)計學(xué)等領(lǐng)域中有著廣泛的應(yīng)用.Schur補理論作為其重要的分支,在大型矩陣降階處理中起到重要的作用,是數(shù)值代數(shù)和矩陣分析研究和探討的重要課題之一.
本文推廣了H-矩陣和塊H-矩陣的幾類判定條件;用原矩陣元素給出了幾類具有對角占優(yōu)子結(jié)構(gòu)矩陣Schur補特征值的分布區(qū)域,推廣和改進了一些已有結(jié)果.
第一章,介紹了矩陣Schur補和廣義Schur補理論的應(yīng)用背景和研究狀態(tài),并給出了本文所涉及的
2、記號和定義.
第二章,利用H-矩陣與廣義γ-對角占優(yōu)矩陣和廣義γ-鏈對角占優(yōu)矩陣的等價關(guān)系,結(jié)合不等式放縮技巧,得到了H-矩陣和塊H-矩陣的幾個判定定理,推廣了一些已有結(jié)果.
第三章,應(yīng)用上一章所得的H-矩陣和塊H-矩陣的判定條件,根據(jù)集合的運算性質(zhì)和Schur補行列式性質(zhì),以及H-矩陣和塊H-矩陣的非奇異性,用原矩陣元素給出了幾類具有對角占優(yōu)子結(jié)構(gòu)矩陣Schur補特征值的分布,推廣和改進了一些已有結(jié)果;進一步,利用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 某些特殊矩陣schur補的對角優(yōu)勢度及其特征值分布
- 某些特殊矩陣Schur補的對角優(yōu)勢度及其特征值分布.pdf
- 42260.γ塊對角占優(yōu)矩陣的schur補
- 塊對角占優(yōu)矩陣Schur補的塊對角占優(yōu)度和圓盤定理.pdf
- 對角占優(yōu)矩陣Schur補對角優(yōu)勢度及其應(yīng)用.pdf
- 幾類對角占優(yōu)矩陣的直積.pdf
- 關(guān)于Schur補的矩陣不等式和特征值不等式.pdf
- 幾類矩陣的逆特征值問題.pdf
- 幾類特殊矩陣的Schur補研究.pdf
- 廣義對角占優(yōu)矩陣和廣義α-對角占優(yōu)矩陣的判定.pdf
- 廣義嚴(yán)格對角占優(yōu)矩陣的幾類判別法.pdf
- 幾類非負(fù)矩陣特征值反問題.pdf
- 幾類特殊矩陣逆特征值問題的研究.pdf
- 特殊矩陣特征值的幾類不等式.pdf
- α-對角占優(yōu)矩陣的性質(zhì)與廣義嚴(yán)格對角占優(yōu)矩陣的判定.pdf
- 代數(shù)逆特征值及矩陣同時對角化問題.pdf
- 幾類特殊矩陣逆特征值問題和幾類約束矩陣方程問題.pdf
- 幾類特殊矩陣特征值反問題與矩陣方程問題.pdf
- 21773.幾類特殊矩陣的逆特征值問題
- 實對稱五對角矩陣的逆特征值問題.pdf
評論
0/150
提交評論