版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、15.3 分式方程 分式方程第 1 課時 課時 分式方程及其解法 分式方程及其解法學(xué)教目標(biāo):1.了解分式方程的概念, 和產(chǎn)生增根的原因.2.掌握分式方程的解法,會解可化為一元一次方程的分式方程,會檢驗一個數(shù)是不是原方程的增根.學(xué)教重點:會解可化為一元一次方程的分式方程,會檢驗一個數(shù)是不是原方程的增根.學(xué)教難點:會解可化為一元一次方程的分式方程,會檢驗一個數(shù)是不是原方程的增根.學(xué)教過程:一、溫故知新:1、前面我們已經(jīng)學(xué)習(xí)了哪些方程?是
2、怎樣的方程?如何求解?(1)前面我們已經(jīng)學(xué)過了 方程。(2)一元一次方程是 方程。(3)一元一次方程解法 步驟是:①去分母;②去括號;③移項;④合并同類項;⑤系數(shù)化為 1。如解方程: 1 63 242 ? ? ? ? x x2、探究新知:一艘輪船在靜水中的最大航速為 20 千米/時,它沿江以最大航速順流 100 千米所用時間,與以最大航速逆流航行 60 千米所用時間相等,江水的流速為多
3、少?分析:設(shè)江水的流速為 v 千米/時,根據(jù)“兩次航行所用時間相同”這一等量關(guān)系,得到方程: . v v ??? 206020100像這樣分母中含未知數(shù)的方程叫做分式方程。分式方程與整式方程的區(qū)別在哪里?通過觀察發(fā)現(xiàn)得到這兩種方程的區(qū)別在于未知數(shù)是否在分母上。未知數(shù)在分母的方程是分式方程。未知數(shù)不在分母的方程是整式方程。前面我們學(xué)過一元一次方程的解法,但是分式方程中分母含有未知數(shù),我們又將如何解?解分式方程的基本思路是將
4、分式方程轉(zhuǎn)化為 方程,具體的方法是去分母,即方程兩邊同乘以最簡公分母。如解方程: =…………………… ① v ? 20100v ? 2060去分母:方程兩邊同乘以最簡公分母(20+v) (20-v) ,得100(20-v)=60(20+v)……………………②解得 v=5觀察方程①、②中的 v 的取值范圍相同嗎?① 由于是分式方程 v≠±20,而②是整式方程 v 可取任何實數(shù)。這說明,對于方程①來說,必須要求使方程
5、中各分式的分母的值均不為 0.但變形后得到的整式方程②則沒有這個要求。如果所得整式方程的某個根,使原分式方程中至少有一個分式的分母的值為 0,也就是說,使變形時所乘的整式的值為 0,它就不適合原方程,即是原分式方程的增根。因此,解分式方程必須驗根。如何驗根:將整式方程的根代入最簡公分母,看它的值是否為 0.如果為 0 即為增根。如解方程: = 。 51? x 25102 ? x分析:為去分母,在方程兩邊同乘最簡公分母 , ? ?
6、? ? 5 5 x x ? ?得整式方程 5 10 x ? ?解得 5 x ?將 代入原方程的最簡公分母檢驗,發(fā)現(xiàn)這時分母 和 的值都是 0,相應(yīng)的分式 5 x ? 5 x ? 2 25 x ?無意義。因此, 雖是整式方程的解,但不是原分式方程的解。實際上,這個方程無解。 5 x ?二、學(xué)教互動解方程: ? ?5 3 122 2 x x x x ? ? ? ?[分析]找對最簡公分母 x(x-2),方程兩邊
7、同乘 x(x-2),把分式方程轉(zhuǎn)化為整式方整式方程的解必須驗根總結(jié):解分式方程的一般步驟是:1.在方程兩邊同乘以最簡公分母,化成 方程;2.解這個 方程;3.檢驗:把 方程的根代入 。如果值 ,就是原方程的根;如果值 ,就是增根,應(yīng)當(dāng) 。三、拓展延伸:解方程 (1) (2) 5 32 x x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 15.3 第1課時 分式方程及其解法1
- 15.3 第1課時 分式方程及其解法
- 15.3 第1課時 分式方程及其解法2
- 15.3 第2課時 分式方程的應(yīng)用1
- 15.3 第2課時 分式方程的應(yīng)用
- 15.3 第2課時 分式方程的應(yīng)用-(4983)
- 5.4 第2課時 分式方程的解法1
- 15.3 第2課時 分式方程的應(yīng)用2
- 5.4 第2課時 分式方程的解法
- 5.4 第2課時 分式方程的解法-(5587)
- 5.4 第2課時 分式方程的解法2
- 5.4 第1課時 分式方程的概念及列分式方程
- 5.4 第1課時 分式方程的概念及列分式方程-(5654)
- 5.4 第1課時 分式方程的概念及列分式方程-(5586)
- 5.4 第3課時 分式方程的應(yīng)用1
- 5.4 第3課時 分式方程的應(yīng)用
- 5.4 第3課時 分式方程的應(yīng)用-(5588)
- 5.4 第3課時 分式方程的應(yīng)用2
- 分式(第1課時)
- [學(xué)習(xí)]分式方程第一課時圖
評論
0/150
提交評論