版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2.1平面向量的實(shí)際背景及基本概念平面向量的實(shí)際背景及基本概念教材分析:向量這一概念是由物理學(xué)和工程技術(shù)抽象出來的,反過來,向量的理論和方法,又成為解決物理學(xué)和工程技術(shù)的重要工具,向量之所以有用,關(guān)鍵是它具有一套良好的運(yùn)算性質(zhì),通過向量可把空間圖形的性質(zhì)轉(zhuǎn)化為向量的運(yùn)算,這樣通過向量就能較容易地研究空間的直線和平面的各種有關(guān)問題。向量不同于數(shù)量,它是一種新的量,關(guān)于數(shù)量的代數(shù)運(yùn)算在向量范圍內(nèi)不都適用。因此,本章在介紹向量概念時(shí),重點(diǎn)說明
2、了向量與數(shù)量的區(qū)別,然后又重新給出了向量代數(shù)的部分運(yùn)算法則,包括加法、減法、實(shí)數(shù)與向量的積、向量的數(shù)量積的運(yùn)算法則等。之后,又將向量與坐標(biāo)聯(lián)系起來,把關(guān)于向量的代數(shù)運(yùn)算與數(shù)量(向量的坐標(biāo))的代數(shù)運(yùn)算聯(lián)系起來,這就為研究和解決有關(guān)幾何問題又提供了兩種方法——向量法和坐標(biāo)法。本章共分五大節(jié)。第一節(jié)是“平面向量的實(shí)際背景及基本概念”,內(nèi)容包括向量的物理背景與概念、向量的幾何表示、相等向量與共線向量。本節(jié)從物理學(xué)中的位移、力這些既有大小又有方向
3、的量出發(fā),抽象出向量的概念,并重點(diǎn)說明了向量與數(shù)量的區(qū)別,然后介紹了向量的幾何表示、向量的長(zhǎng)度、零向量、單位向量、平行向量、共線向量、相等向量等基本概念。在“向量的物理背景與概念”中介紹向量的定義;在“向量的幾何表示”中,主要介紹有向線段、有向線段的三個(gè)要素、向量的表示、向量與有向線段的區(qū)別與聯(lián)系、向量的長(zhǎng)度、零向量、單位向量、平行向量;在“相等向量與共線向量”中,主要介紹相等向量,共線向量定義等。教學(xué)目標(biāo):1、了解向量的實(shí)際背景,理解
4、平面向量的概念和向量的幾何表示;掌握向量的模、零向量、單位向量、平行向量、相等向量、共線向量等概念;并會(huì)區(qū)分平行向量、相等向量和共線向量.2、通過對(duì)向量的學(xué)習(xí),使學(xué)生初步認(rèn)識(shí)現(xiàn)實(shí)生活中的向量和數(shù)量的本質(zhì)區(qū)別.3、通過學(xué)生對(duì)向量與數(shù)量的識(shí)別能力的訓(xùn)練,培養(yǎng)學(xué)生認(rèn)識(shí)客觀事物的數(shù)學(xué)本質(zhì)的能力.教學(xué)重點(diǎn):理解并掌握向量、零向量、單位向量、相等向量、共線向量的概念,會(huì)表示向量.教學(xué)難點(diǎn):平行向量、相等向量和共線向量的區(qū)別和聯(lián)系.學(xué)法:本節(jié)是本章的
5、入門課,概念較多,但難度不大.學(xué)生可根據(jù)在原有的位移、力等物理概念來學(xué)習(xí)向量的概念,結(jié)合圖形實(shí)物區(qū)分平行向量、相等向量、共線向量等概念.教具:多媒體或?qū)嵨锿队皟x,尺規(guī)授課類型:新授課教學(xué)過程:一、情景設(shè)置:一、情景設(shè)置:如圖,老鼠由A向西北逃竄,貓?jiān)贐處向東追去,設(shè)問:貓能否追到老鼠?(畫圖)結(jié)論:貓的速度再快也沒用,因?yàn)榉较蝈e(cuò)了.分析:老鼠逃竄的路線AC、貓追逐的路線BD實(shí)際上都是有方向、有長(zhǎng)短的量.引言:請(qǐng)同學(xué)指出哪些量既有大小又有
6、方向?哪些量只有大小沒有方向?二、新課學(xué)習(xí)二、新課學(xué)習(xí):(一)向量的概念:我們把既有大小又有方向的量叫向量(二)請(qǐng)同學(xué)閱讀課本后回答:(可制作成幻燈片)ABCD(3)任意兩個(gè)相等的非零向量,都可用同一條有向線段來表示,并且與有向線段的起點(diǎn)無關(guān).7、共線向量與平行向量關(guān)系:平行向量就是共線向量,這是因?yàn)槿我唤M平行向量都可移到同一直線上(與有向線段的起點(diǎn)無關(guān)).說明:(1)平行向量可以在同一直線上,要區(qū)別于兩平行線的位置關(guān)系;(2)共線向量
7、可以相互平行,要區(qū)別于在同一直線上的線段的位置關(guān)系.(四)理解和鞏固:例1書本86頁(yè)例1.例2判斷:(1)平行向量是否一定方向相同?(不一定)(2)不相等的向量是否一定不平行?(不一定)(3)與零向量相等的向量必定是什么向量?(零向量)(4)與任意向量都平行的向量是什么向量?(零向量)(5)若兩個(gè)向量在同一直線上,則這兩個(gè)向量一定是什么向量?(平行向量)(6)兩個(gè)非零向量相等的當(dāng)且僅當(dāng)什么?(長(zhǎng)度相等且方向相同)(7)共線向量一定在同一
8、直線上嗎?(不一定)例3下列命題正確的是()A.a與b共線,b與c共線,則a與c也共線B.任意兩個(gè)相等的非零向量的始點(diǎn)與終點(diǎn)是一平行四邊形的四頂點(diǎn)C.向量a與b不共線,則a與b都是非零向量D.有相同起點(diǎn)的兩個(gè)非零向量不平行解:由于零向量與任一向量都共線,所以A不正確;由于數(shù)學(xué)中研究的向量是自由向量,所以兩個(gè)相等的非零向量可以在同一直線上,而此時(shí)就構(gòu)不成四邊形,根本不可能是一個(gè)平行四邊形的四個(gè)頂點(diǎn),所以B不正確;向量的平行只要方向
9、相同或相反即可,與起點(diǎn)是否相同無關(guān),所以D不正確;對(duì)于C,其條件以否定形式給出,所以可從其逆否命題來入手考慮,假若a與b不都是非零向量,即a與b至少有一個(gè)是零向量,而由零向量與任一向量都共線,可有a與b共線,不符合已知條件,所以有a與b都是非零向量,所以應(yīng)選C.例4如圖,設(shè)O是正六邊形ABCDEF的中心,分別寫出圖中與向量OA、OB、OC相等的向量.變式一:與向量長(zhǎng)度相等的向量有多少個(gè)?(11個(gè))變式二:是否存在與向量長(zhǎng)度相等、方向相反
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2.1 平面向量的實(shí)際背景及基本概念通用 (1)
- 2.1 平面向量的實(shí)際背景及基本概念通用 (4)
- 《平面向量的實(shí)際背景及基本概念》教學(xué)設(shè)計(jì)
- 平面向量的實(shí)際背景及基本概念教學(xué)設(shè)計(jì)
- zlh1平面向量的實(shí)際背景及基本概念
- 平面向量的基本概念
- 平面向量的基本概念
- 高一向量的實(shí)際背景及基本概念
- 平面向量(向量的概念、向量的運(yùn)算、平面向量的坐
- 平面向量學(xué)案
- 平面向量的基本定理及坐標(biāo)表示導(dǎo)學(xué)案1
- 平面向量基本定理公開課學(xué)案
- 平面向量的基本定理及坐標(biāo)表示導(dǎo)學(xué)案2
- 平面向量的概念教案
- 平面向量的數(shù)量積及平面向量應(yīng)用舉例導(dǎo)學(xué)案1
- 1平面向量概念
- 平面向量的概念及其線性運(yùn)算導(dǎo)學(xué)案2
- 平面向量基本定理
- 平面向量的概念及其線性運(yùn)算導(dǎo)學(xué)案3
評(píng)論
0/150
提交評(píng)論