aprimerineconometrictheory2016ch1_第1頁
已閱讀1頁,還剩4頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、Chapter1Introduction1.1TheNatureofEconometricsIseconometricsjuststatisticsappliedtoeconomicproblemsTosaysoseemsinsulting.Afteralleconometricianshavemademanyfundamentalcontributionstothetheypracticeofquantitativemodeling.

2、Atthesametimewedoourselvesadisserviceifwefailtolinkcommonprinciplesfromdifferentfields.SoistheansweryesnoifnowhatiseconometricsWecanprobablyagreethateconometricsisconcernedwithquantitativeanalysisofeconomicproblemsusingd

3、ata.Oneoftheidiosyncrasiesofeconomicdataisthatmostareobservationalasopposedtoexperimental.Theprevalenceofobservationaldatahasbeenanongoingchallengefeconometriciansespeciallythoseconcernedwithcausalinference.Thischallenge

4、hascertainlyshapedwhatwecalleconometrics.Anotheridiosyncrasyofeconometricsisthatitmodelstheimplicationsofchoicesmadebypeoplehumanbeingshavestubbnlyrefusedtoadoptthekindsofbehavialpatternsthatwouldmaketheirchoiceseasytore

5、plicateconsistentlyinquantitativemodels.Eventhebesteconomicmodelsareonlyrightalongonetwodimensions.Thisfacthasledtoarelativeemphasisonestimationmethodsthatusepartiallyspecifiedmodelssuchasthegeneralizedmethodofmoments.At

6、hirdnotablefeatureofeconometricsisthatittendstofocusmeonmodelsthatexplainthanmodelsthatpredict.Thisisparticularlysoifyoucompareeconometricstofieldslikedatasciencemachinelearning.FexampleconsiderthefollowingquotefromVapni

7、k(2006):Ibelievethatsomethingdrastichashappenedincomputersciencemachinelearning.Untilrecentlyphilosophywasbasedontheideathat1Introduction3Whileourancestsbestabletodistinguishamongtypesofwildcreatureswerecertainlymesucces

8、sfulinpassingontheirgeneslittleinthenaturalsocialwldofthepastthoussomillenniahaspreparedHomosapiensftryingtobackouttheprobabilisticstructurebehindfirmsizedistributionstodistinguishamongdiffusionprocessesmostappropriateft

9、rackingassetprices.Statisticseconometricsarewaysfustoscalecodifyourinductivelearningabilitiesindertoconfrontthesenewproblems.Thisthenisthefundamentalproblemofbotheconometricsstatistics:inthemodernwldwehavelotsofdatabutst

10、illlackdeepknowledgeonhowmanysystemswkhowdifferenteconomicvariablesarerelatedtooneanother.Whatistheprocessofextractinggeneralknowledgefromdata—thatisfromspecificobservationsWhatarethebesttechniquestouseUnderwhatcondition

11、swillthisprocessbesuccessful1.2DataversusTheyOneoftherecurringissuesinanyfmofstatisticallearningistheneedtoblendtheywithdata.Toillustratetheideasupposethatweobserveinputsx1...xNtosomesystemaswellascrespondingoutputsy1...

12、yN.Fexampletheinputsmightbea“treatment“suchastheschoolreadingprogrammentionedabove.Outputscouldbeameasureoftheeffectofthistreatment.inputscouldbeamixofpolicyinstrumentssuchasspendinginterestrateswithoutputsbeingtherespon

13、seofquantitieslikeinflationunemployment.Giventheobservedinput–outputpairsweseekafunctionfsuchthatgivenanewpair(xy)thevaluef(x)willaccuratelypredictthecrespondingoutputy.Ifweknewthejointdistributionof(xy)pairsthenwecouldc

14、omputeapproximatetheconditionalexpectationE[y|x]whichaswe’llseehasastrongclaimtobeingthebestpredictofygivenx.Ourproblemliesinthefactthatwedon’tknowthedistribution.Insteadwehavethesamplewhichcontainssomebutnotallinfmation

15、aboutthejointdistribution.Inproblemssuchasthisourabilitytogeneralizerequiresmethanjustdata.Ideallydataarecombinedwithatheeticalmodelthatencapsulatesourknowledgeofthesystemwearestudying.Datacanbeusedtopindownparametervalu

16、esfthemodel.Ifourmodelisgoodthencombiningthemodelwithdataallowsustogainanunderstingofhowthesystemwks.Evenwhenwehavenofmalmodelofhowthesystemwkswecannotavoidassumptionsifwewanttogeneralize.Figure1.1helpsillustratethisidea

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論