版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、LSTM:ASearchSpaceOdysseyKlausGreffRupeshKumarSrivastavaJanKoutn?kBasR.SteunebrinkJurgenSchhubereSwissAILabIDSIAIstitutoDalleMollediStudisull’IntelligenzaArtificialeUniversit`adellaSvizzeraitaliana(USI)Scuolauniversitaria
2、professionaledellaSvizzeraitaliana(SUPSI)Galleria26928MannoLuganoSwitzerlAbstractSeveralvariantsoftheLongShtTermMemy(LSTM)architecturefrecurrentneuralwkshavebeenproposedsinceitsinceptionin1995.Inrecentyearsthesewkshavebe
3、comethestateoftheartmodelsfavarietyofmachinelearningproblems.ThishasledtoarenewedinterestinunderstingtheroleutilityofvariouscomputationalcomponentsoftypicalLSTMvariants.Inthispaperwepresentthefirstlargescaleanalysisofeig
4、htLSTMvariantsonthreerepresentativetasks:speechrecognitionhwritingrecognitionpolyphonicmusicmodeling.ThehyperparametersofallLSTMvariantsfeachtaskwereoptimizedseparatelyusingromsearchtheirimptancewasassessedusingthepowerf
5、ulfANOVAframewk.Intotalwesummarizetheresultsof5400experimentalruns(≈15yearsofCPUtime)whichmakesourstudythelargestofitskindonLSTMwks.OurresultsshowthatnoneofthevariantscanimproveuponthestardLSTMarchitecturesignificantlyde
6、monstratethefgetgatetheoutputactivationfunctiontobeitsmostcriticalcomponents.Wefurtherobservethatthestudiedhyperparametersarevirtuallyindependentderiveguidelinesftheirefficientadjustment.1.IntroductionRecurrentneuralwksw
7、ithLongShtTermMemy(whichwewillconciselyrefertoasLSTMs)haveemergedasaneffectivescalablemodelfseverallearningproblemsrelatedtosequentialdata.Earliermethodsfattackingtheseproblemswereusuallyhdesignedwkaroundstodealwiththese
8、quentialnatureofdatasuchaslanguageaudiosignals.SinceLSTMsareeffectiveatcapturinglongtermtempaldependencieswithoutsufferingfromtheoptimizationhurdlesthatplaguesimplerecurrentwks(SRNs)(Hochreiter1991Bengioetal.1994)theyhav
9、ebeenusedtoadvancethestateoftheartfmanydifficultproblems.Thisincludeshwritingrecognition(Gravesetal.2009Phametal.2013Doetschetal.2014)generation(Gravesetal.2013)languagemodeling(Zarembaetal.2014)translation(Luongetal.201
10、4)acousticmodelingofspeech(Saketal.2014)speechsynthesis(Fanetal.2014)proteinsecondarystructureprediction(Snderby1997).HoweverLSTMsarenowappliedtomanylearningproblemswhichdiffersignificantlyinscalenaturefromtheproblemstha
11、ttheseimprovementswereinitiallytestedon.AsystematicstudyoftheutilityofvariouscomputationalcomponentswhichcompriseLSTMs(seeFigure1)wasmissing.ThispaperfillsthatgapsystematicallyaddressestheopenquestionofimprovingtheLSTMar
12、chitecture.WeevaluatethemostpopularLSTMarchitecture(vanillaLSTMSection2)eightdifferentvariantsthereofonthreebenchmarkproblems:acousticmodelinghwritarXiv:1503.04069v1[cs.NE]13Mar2015LSTM:ASearchSpaceOdysseynectionswasd.Th
13、usthatstudydidnotusetheexactgradientftraining.Anotherfeatureofthatversionwastheuseoffullgaterecurrencewhichmeansthatallthegatesreceivedrecurrentinputsfromallgatesattheprevioustimestepinadditiontotherecurrentinputsfromthe
14、blockoutputs.Thisfeaturedidnotappearinanyofthelaterpapers.3.2.FgetGateThefirstpapertosuggestamodificationoftheLSTMarchitectureintroducedthefgetgate(Gersetal.1999)enablingtheLSTMtoresetitsownstate.Thisallowedlearningofcon
15、tinualtaskssuchasembeddedRebergrammar.3.3.PeepholeConnectionsGers&Schhuber(2000)arguedthatindertolearnprecisetimingsthecellneedstocontrolthegates.Sofarthiswasonlypossiblethroughanopenoutputgate.Peepholeconnections(connec
16、tionsfromthecelltothegatesblueinFigure1)wereaddedtothearchitectureindertomakeprecisetimingseasiertolearn.AdditionallytheoutputactivationfunctionwasomittedastherewasnoevidencethatitwasessentialfsolvingtheproblemsthatLSTMh
17、adbeentestedonsofar.3.4.FullGradientThefinalmodificationtowardsthevanillaLSTMwasdonebyGraves&Schhuber(2005).Thisstudypresentedthefullbackpropagationthroughtime(BPTT)trainingfLSTMwkswiththearchitecturedescribedinSection2p
18、resentedresultsontheTIMITbenchmark.UsingfullBPTThadtheaddedadvantagethatLSTMgradientscouldbecheckedusingfinitedifferencesmakingpracticalimplementationsmereliable.3.5.OtherVariantsSinceitsintroductionthevanillaLSTMhasbeen
19、themostcommonlyusedarchitecturebutothervariantshavebeensuggestedtoo.BefetheintroductionoffullBPTTtrainingGersetal.(2002)utilizedatrainingmethodbasedonExtendedKalmanFilteringwhichenabledtheLSTMtobetrainedonsomepathologica
20、lcasesatthecostofhighcomputationalcomplexity.Schhuberetal.(2007)proposedusingahybridevolutionbasedmethodinsteadofBPTTftrainingbutretainedthevanillaLSTMarchitecture.Bayeretal.(2009)evolveddifferentLSTMblockarchitecturesth
21、atmaximizefitnessoncontextsensitivegrammars.Saketal.(2014)introducedalinearprojectionlayerthatprojectstheoutputoftheLSTMlayerdownbeferecurrentfwardconnectionsindertoreducetheamountofparametersfLSTMwkswithmanyblocks.Byint
22、roducingatrainablescalingparameterftheslopeofthegateactivationfunctionsDoetschetal.(2014)wereabletoimprovetheperfmanceofLSTMonanofflinehwritingrecognitiondataset.InwhattheycallDynamicCtexMemyOtteetal.(2014)improvedconver
23、gencespeedofLSTMbyaddingrecurrentconnectionsbetweenthegatesofasingleblock(butnotbetweentheblocks).Choetal.(2014)proposedasimplificationoftheLSTMarchitecturecalledGatedRecurrentUnit(GRU).Theyusedneitherpeepholeconnections
24、noutputactivationfunctionscoupledtheinputthefgetgateintoanupdategate.Finallytheiroutputgate(calledresetgate)onlygatestherecurrentconnectionstotheblockinput(Wz).Chungetal.(2014)perfmedaninitialcomparisonbetweenGRULSTMrept
25、edmixedresults.4.EvaluationSetupThefocusofourstudyistocomparedifferentLSTMvariantsnottoachievestateoftheartresults.Therefeourexperimentsaredesignedtokeepthesetupsimplethecomparisonsfair.ThevanillaLSTMisusedasabaselineeva
26、luatedtogetherwitheightofitsvariants.Eachvariantaddsremovesmodifiesthebaselineinexactlyoneaspectwhichallowstoisolatetheireffect.Threedifferentdatasetsfromdifferentdomainsareusedtoaccountfcrossdomainvariations.Sincehyperp
27、arameterspaceislargeimpossibletotraversecompletelyromsearchwasusedindertoobtainthebestperfminghyperparameters(Bergstra&Bengio2012)feverycombinationofvariantdataset.Thereafterallanalysesfocusedonthe10%bestperfmingtrialsfe
28、achvariantdataset(Section5.1)makingtheresultsrepresentativefthecaseofreasonablehyperparametertuningeffts.Romsearchwasalsochosenftheaddedbenefitofprovidingenoughdatafanalyzingthegeneraleffectofvarioushyperparametersonthep
29、erfmanceofeachLSTMvariant(Section5.2).4.1.DatasetsEachdatasetissplitintothreeparts:atrainingsetavalidationsetwhichisusedfearlystoppingfoptimizingthehyperparametersatestsetfthefinalevaluation.Detailsofpreprocessingfeachda
30、tasetareprovidedinthesupplementarymaterial.4.1.1.TIMITTheTIMITSpeechcpus(Garofoloetal.1993)islargeenoughtobeareasonableacousticmodelingbenchmarkfspeechrecognitionyetitissmallenoughtokeepalargestudysuchasoursmanageable.Ou
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2010-2016精選論文2016-shahriari-bayesopt-ieee-2016
- 2010-2016精選論文2013-1312.5602v1
- 2010-2016精選論文2014-d14-1162
- 2010-2016精選論文2013-wang_iccv13
- 2010-2016精選論文2014-1408.5882v2
- 2010-2016精選論文2015_batch_normalization_accelerating_deep_network_training_by_reducing_internal_covariate_shift
- 2010-2016精選論文2014-deepface-closing-the-gap-to-human-level-performance
- 高中物理選修3-3(2010-2016年)高考題精選(含解析)
- 山東高考英語作文題及范文(2010-2016)
- 2010-2016年南京中考數(shù)學試題及答案
- 2010-2016年碩士研究生畢業(yè)情況
- 當下中國電影的救贖性研究(2010-2016).pdf
- 2010-2016司考國際私法司考真題及解析
- 2010-2016生命科學技術學院獲獎情況
- 國產(chǎn)系列電影傳播效果研究(2010-2016年)_2129.pdf
- 2010-2016年考研英語二歷年真題及答案解析
- 次北固山下-++中考古詩賞析要點解析++2010-2016
- 北京大學社會工作考研真題2010-2016
- 2010-2016年考研英語二歷年真題及答案解析(完整版)
- 新浪網(wǎng)2010-2016年性工作者媒介形象研究.pdf
評論
0/150
提交評論