2010-2016精選論文2013-1312.5602v1_第1頁
已閱讀1頁,還剩8頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、PlayingAtariwithDeepReinfcementLearningVolodymyrMnihKayKavukcuogluDavidSilverAlexGravesIoannisAntonoglouDaanWierstraMartinRiedmillerDeepMindTechnologiesvladkaydavidalex.gravesioannisdaanmartin.riedmiller@AbstractWepresen

2、tthefirstdeeplearningmodeltosuccessfullylearncontrolpoliciesdirectlyfromhighdimensionalsensyinputusingreinfcementlearning.ThemodelisaconvolutionalneuralwktrainedwithavariantofQlearningwhoseinputisrawpixelswhoseoutputisav

3、aluefunctionestimatingfuturerewards.WeapplyourmethodtosevenAtari2600gamesfromtheArcadeLearningEnvironmentwithnoadjustmentofthearchitecturelearningalgithm.Wefindthatitoutperfmsallpreviousapproachesonsixofthegamessurpasses

4、ahumanexpertonthreeofthem.1IntroductionLearningtocontrolagentsdirectlyfromhighdimensionalsensyinputslikevisionspeechisoneofthelongstingchallengesofreinfcementlearning(RL).MostsuccessfulRLapplicationsthatoperateonthesedom

5、ainshavereliedonhcraftedfeaturescombinedwithlinearvaluefunctionspolicyrepresentations.Clearlytheperfmanceofsuchsystemsheavilyreliesonthequalityofthefeaturerepresentation.Recentadvancesindeeplearninghavemadeitpossibletoex

6、tracthighlevelfeaturesfromrawsensydataleadingtobreakthroughsincomputervision[112216]speechrecognition[67].ThesemethodsutilisearangeofneuralwkarchitecturesincludingconvolutionalwksmultilayerperceptronsrestrictedBoltzmannm

7、achinesrecurrentneuralwkshaveexploitedbothsupervisedunsupervisedlearning.ItseemsnaturaltoaskwhethersimilartechniquescouldalsobebeneficialfRLwithsensydata.Howeverreinfcementlearningpresentsseveralchallengesfromadeeplearni

8、ngperspective.Firstlymostsuccessfuldeeplearningapplicationstodatehaverequiredlargeamountsofhlabelledtrainingdata.RLalgithmsontheotherhmustbeabletolearnfromascalarrewardsignalthatisfrequentlysparsenoisydelayed.Thedelaybet

9、weenactionsresultingrewardswhichcanbethoussoftimestepslongseemsparticularlydauntingwhencomparedtothedirectassociationbetweeninputstargetsfoundinsupervisedlearning.Anotherissueisthatmostdeeplearningalgithmsassumethedatasa

10、mplestobeindependentwhileinreinfcementlearningonetypicallyencounterssequencesofhighlycrelatedstates.FurthermeinRLthedatadistributionchangesasthealgithmlearnsnewbehaviourswhichcanbeproblematicfdeeplearningmethodsthatassum

11、eafixedunderlyingdistribution.ThispaperdemonstratesthataconvolutionalneuralwkcanovercomethesechallengestolearnsuccessfulcontrolpoliciesfromrawvideodataincomplexRLenvironments.ThewkistrainedwithavariantoftheQlearning[26]a

12、lgithmwithstochasticgradientdescenttoupdatetheweights.Toalleviatetheproblemsofcrelateddatanonstationarydistributionsweuse1arXiv:1312.5602v1[cs.LG]19Dec2013maximisingtheexpectedvalueofrγQ?(s?a?)Q?(sa)=Es?~E?rγmaxa?Q?(s?a?

13、)???sa?(1)ThebasicideabehindmanyreinfcementlearningalgithmsistoestimatetheactionvaluefunctionbyusingtheBellmanequationasaniterativeupdateQi1(sa)=E[rγmaxa?Qi(s?a?)|sa].Suchvalueiterationalgithmsconvergetotheoptimalactionv

14、aluefunctionQi→Q?asi→∞[23].Inpracticethisbasicapproachistotallyimpracticalbecausetheactionvaluefunctionisestimatedseparatelyfeachsequencewithoutanygeneralisation.Insteaditiscommontouseafunctionapproximattoestimatetheacti

15、onvaluefunctionQ(saθ)≈Q?(sa).Inthereinfcementlearningcommunitythisistypicallyalinearfunctionapproximatbutsometimesanonlinearfunctionapproximatisusedinsteadsuchasaneuralwk.Werefertoaneuralwkfunctionapproximatwithweightsθa

16、saQwk.AQwkcanbetrainedbyminimisingasequenceoflossfunctionsLi(θi)thatchangesateachiterationiLi(θi)=Esa~ρ()?(yi?Q(saθi))2?(2)whereyi=Es?~E[rγmaxa?Q(s?a?θi?1)|sa]isthetargetfiterationiρ(sa)isaprobabilitydistributionoversequ

17、encessactionsathatwerefertoasthebehaviourdistribution.Theparametersfromthepreviousiterationθi?1areheldfixedwhenoptimisingthelossfunctionLi(θi).Notethatthetargetsdependonthewkweightsthisisincontrastwiththetargetsusedfsupe

18、rvisedlearningwhicharefixedbefelearningbegins.Differentiatingthelossfunctionwithrespecttotheweightswearriveatthefollowinggradient?θiLi(θi)=Esa~ρ()s?~E??rγmaxa?Q(s?a?θi?1)?Q(saθi)??θiQ(saθi)?.(3)Ratherthancomputingthefull

19、expectationsintheabovegradientitisoftencomputationallyexpedienttooptimisethelossfunctionbystochasticgradientdescent.Iftheweightsareupdatedaftereverytimesteptheexpectationsarereplacedbysinglesamplesfromthebehaviourdistrib

20、utionρtheemulatErespectivelythenwearriveatthefamiliarQlearningalgithm[26].Notethatthisalgithmismodelfree:itsolvesthereinfcementlearningtaskdirectlyusingsamplesfromtheemulatEwithoutexplicitlyconstructinganestimateofE.Itis

21、alsooffpolicy:itlearnsaboutthegreedystrategya=maxaQ(saθ)whilefollowingabehaviourdistributionthatensuresadequateexplationofthestatespace.Inpracticethebehaviourdistributionisoftenselectedbyan?greedystrategythatfollowsthegr

22、eedystrategywithprobability1??saromactionwithprobability?.3RelatedWkPerhapsthebestknownsuccessstyofreinfcementlearningisTDgammonabackgammonplayingprogramwhichlearntentirelybyreinfcementlearningselfplayachievedasuperhuman

23、levelofplay[24].TDgammonusedamodelfreereinfcementlearningalgithmsimilartoQlearningapproximatedthevaluefunctionusingamultilayerperceptronwithonehiddenlayer1.HoweverearlyattemptstofollowuponTDgammonincludingapplicationsoft

24、hesamemethodtochessGocheckerswerelesssuccessful.ThisledtoawidespreadbeliefthattheTDgammonapproachwasaspecialcasethatonlywkedinbackgammonperhapsbecausethestochasticityinthedicerollshelpsexplethestatespacealsomakesthevalue

25、functionparticularlysmooth[19].FurthermeitwasshownthatcombiningmodelfreereinfcementlearningalgithmssuchasQlearningwithnonlinearfunctionapproximats[25]indeedwithoffpolicylearning[1]couldcausetheQwktodiverge.Subsequentlyth

26、emajityofwkinreinfcementlearningfocusedonlinearfunctionapproximatswithbetterconvergenceguarantees[25].1InfactTDGammonapproximatedthestatevaluefunctionV(s)ratherthantheactionvaluefunctionQ(sa)learntonpolicydirectlyfromthe

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論