版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、DeepFace:ClosingtheGaptoHumanLevelPerfmanceinFaceVerificationYanivTaigmanMingYangMarc’AurelioRanzatoFacebookAIResearchMenloParkCAUSAyanivmingyangranzato@LiWolfTelAvivUniversityTelAvivstractInmodernfacerecognitiontheconve
2、ntionalpipelineconsistsoffourstages:detect?align?represent?classify.Werevisitboththealignmentsteptherepresentationstepbyemployingexplicit3Dfacemodelingindertoapplyapiecewiseaffinetransfmationderiveafacerepresentationfrom
3、aninelayerdeepneuralwk.Thisdeepwkinvolvesmethan120millionparametersusingseverallocallyconnectedlayerswithoutweightsharingratherthanthestardconvolutionallayers.Thuswetraineditonthelargestfacialdatasettodateanidentitylabel
4、eddatasetoffourmillionfacialimagesbelongingtomethan4000identities.Thelearnedrepresentationscouplingtheaccuratemodelbasedalignmentwiththelargefacialdatabasegeneralizeremarkablywelltofacesinunconstrainedenvironmentsevenwit
5、hasimpleclassifier.Ourmethodreachesanaccuracyof97.35%ontheLabeledFacesintheWild(LFW)datasetreducingtheerrofthecurrentstateoftheartbymethan27%closelyapproachinghumanlevelperfmance.1.IntroductionFacerecognitioninunconstrai
6、nedimagesisatthefefrontofthealgithmicperceptionrevolution.Thesocialculturalimplicationsoffacerecognitiontechnologiesarefarreachingyetthecurrentperfmancegapinthisdomainbetweenmachinesthehumanvisualsystemservesasabufferfro
7、mhavingtodealwiththeseimplications.Wepresentasystem(DeepFace)thathasclosedthemajityoftheremaininggapinthemostpopularbenchmarkinunconstrainedfacerecognitionisnowatthebrinkofhumanlevelaccuracy.Itistrainedonalargedatasetoff
8、acesacquiredfromapopulationvastlydifferentthantheoneusedtoconstructtheevaluationbenchmarksitisabletooutperfmexistingsystemswithonlyveryminimaladaptation.Meoverthesystemproducesanextremelycompactfacerepresentationinsheerc
9、ontrasttotheshifttowardtensofthoussofappearancefeaturesinotherrecentsystems[572].Theproposedsystemdiffersfromthemajityofcontributionsinthefieldinthatitusesthedeeplearning(DL)framewk[321]inlieuofwellengineeredfeatures.DLi
10、sespeciallysuitablefdealingwithlargetrainingsetswithmanyrecentsuccessesindiversedomainssuchasvisionspeechlanguagemodeling.Specificallywithfacesthesuccessofthelearnedincapturingfacialappearanceinarobustmannerishighlydepen
11、dentonaveryrapid3Dalignmentstep.Thewkarchitectureisbasedontheassumptionthatoncethealignmentiscompletedthelocationofeachfacialregionisfixedatthepixellevel.ItistherefepossibletolearnfromtherawpixelRGBvalueswithoutanyneedto
12、applyseverallayersofconvolutionsasisdoneinmanyotherwks[1921].Insummarywemakethefollowingcontributions:(i)Thedevelopmentofaneffectivedeepneural(DNN)architecturelearningmethodthatleverageaverylargelabeleddatasetoffacesinde
13、rtoobtainafacerepresentationthatgeneralizeswelltootherdatasets(ii)Aneffectivefacialalignmentsystembasedonexplicit3Dmodelingoffaces(iii)Advancethestateoftheartsignificantlyin(1)theLabeledFacesintheWildbenchmark(LFW)[18]re
14、achingnearhumanperfmance(2)theYouTubeFacesdataset(YTF)[30]decreasingtheerrratetherebymethan50%.1.1.RelatedWkBigdatadeeplearningInrecentyearsalargenumberofphotoshavebeencrawledbysearchenginesuploadedtosocialwkswhichinclud
15、eavarietyofunconstrainedmaterialsuchasobjectsfacesscenes.Thislargevolumeofdatatheincreaseincomputationalresourceshaveenabledtheuseofmepowerfulstatisticalmodels.Thesemodelshavedrasticallyimprovedtherobustnessofvisionsyste
16、mstoseveralimptantvariationssuchasnonrigiddefmationsclutterocclusionilluminationallproblemsthatareattheceofmanycomputervisionapplications.Whileconventionalmachine1pointdetectbutapplyitinseveraliterationstorefineitsoutput
17、.AteachiterationfiducialpointsareextractedbyaSupptVectRegress(SVR)trainedtopredictpointconfigurationsfromanimagede.OurimagedeisbasedonLBPHistograms[1]butotherfeaturescanalsobeconsidered.Bytransfmingtheimageusingtheinduce
18、dsimilaritymatrixTtoanewimagewecanrunthefiducialdetectagainonanewfeaturespacerefinethelocalization.2DAlignmentWestartouralignmentprocessbydetecting6fiducialpointsinsidethedetectioncropcenteredatthecenteroftheeyestipofthe
19、nosemouthlocationsasillustratedinFig.1(a).TheyareusedtoapproximatelyscalerotatetranslatetheimageintosixanchlocationsbyfittingTi2d:=(siRiti)where:xjanch:=si[Ri|ti]?xjsourcefpointsj=1..6iterateonthenewwarpedimageuntilthere
20、isnosubstantialchangeeventuallycomposingthefinal2Dsimilaritytransfmation:T2d:=T12d?...?Tk2d.Thisaggregatedtransfmationgeneratesa2DalignedcropasshowninFig.1(b).ThisalignmentmethodissimilartotheoneemployedinLFWawhichhasbee
21、nusedfrequentlytoboostrecognitionaccuracy.Howeversimilaritytransfmationfailstocompensatefoutofplanerotationwhichisparticularlyimptantinunconstrainedconditions.3DAlignmentIndertoalignfacesundergoingoutofplanerotationsweus
22、eageneric3Dshapemodelregistera3Daffinecamerawhichareusedtowarpthe2Dalignedcroptotheimageplaneofthe3Dshape.Thisgeneratesthe3DalignedversionofthecropasillustratedinFig.1(g).Thisisachievedbylocalizingadditional67fiducialpoi
23、ntsx2dinthe2Dalignedcrop(seeFig.1(c))usingasecondSVR.Asa3Dgenericshapemodelwesimplytaketheaverageofthe3DscansfromtheUSFHumanIDdatabasewhichwerepostprocessedtoberepresentedasalignedverticesvi=(xiyizi)ni=1.Wemanuallyplace6
24、7anchpointsonthe3Dshapeinthiswayachievefullcrespondencebetweenthe67detectedfiducialpointstheir3Dreferences.Anaffine3Dto2DcameraPisthenfittedusingthegeneralizedleastsquaressolutiontothelinearsystemx2d=X3d?Pwithaknowncovar
25、iancematrixΣthatis?Pthatminimizesthefollowingloss:loss(?P)=rTΣ?1rwherer=(x2d?X3d?P)istheresidualvectX3disa(67?2)8matrixcomposedbystackingthe(28)matrices[x?3d(i)1?0?0x?3d(i)1]with?0denotingarowvectoffourzerosfeachreferenc
26、efiducialpointx3d(i).TheaffinecameraPofsize24isrepresentedbythevectof8unknowns?P.ThelosscanbeminimizedusingtheCholeskydecompositionofΣthattransfmstheproblemintodinaryleastsquares.Sincefexampledetectedpointsonthecontourof
27、thefacetendtobemenoisyastheirestimatedlocationislargelyinfluencedbythedepthwithrespecttothecameraangleweusea(67?2)(67?2)covariancematrixΣgivenbytheestimatedcovariancesofthefiducialpointerrs.FrontalizationSincefullperspec
28、tiveprojectionsnonrigiddefmationsarenotmodeledthefittedcameraPisonlyanapproximation.Indertoreducethecruptionofsuchimptantidentitybearingfactstothefinalwarpingweaddthecrespondingresidualsinrtothexycomponentsofeachreferenc
29、efiducialpointx3dwedenotethisas?x3d.Sucharelaxationisplausiblefthepurposeofwarpingthe2Dimagewithsmallerdisttionstotheidentity.Withoutitfaceswouldhavebeenwarpedintothesameshapein3Dlosingimptantdiscriminativefacts.Finallyt
30、hefrontalizationisachievedbyapiecewiseaffinetransfmationTfromx2d(source)to?x3d(target)directedbytheDelaunaytriangulationderivedfromthe67fiducialpoints1.Alsoinvisibletrianglesw.r.t.tocameraPcanbereplacedusingimageblending
31、withtheirsymmetricalcounterparts.3.RepresentationInrecentyearsthecomputervisionliteraturehasattractedmanyresearchefftsindeengineering.Suchdeswhenappliedtofacerecognitionmostlyusethesameoperattoalllocationsinthefacialimag
32、e.Recentlyasmedatahasbecomeavailablelearningbasedmethodshavestartedtooutperfmengineeredfeaturesbecausetheycandiscoveroptimizefeaturesfthespecifictaskath[19].Herewelearnagenericrepresentationoffacialimagesthroughalargedee
33、pwk.DNNArchitectureTrainingWetrainourDNNonamulticlassfacerecognitiontasknamelytoclassifytheidentityofafaceimage.TheoverallarchitectureisshowninFig.2.A3Daligned3channels(RGB)faceimageofsize152by152pixelsisgiventoaconvolut
34、ionallayer(C1)with32filtersofsize11x11x3(wedenotethisby32x11x11x3@152x152).Theresulting32featuremapsarethenfedtoamaxpoolinglayer(M2)whichtakesthemaxover3x3spatialneighbhoodswithastrideof2separatelyfeachchannel.Thisisfoll
35、owedbyanotherconvolutionallayer(C3)thathas16filtersofsize9x9x16.Thepurposeofthesethreelayersistoextractlowlevelfeatureslikesimpleedgestexture.Maxpoolinglayersmaketheoutputofconvolutionwksmerobusttolocaltranslations.Whena
36、ppliedtoalignedfacialimagestheymakethewkmerobusttosmallregistrationerrs.Howeverseverallevelsofpoolingwouldcausethewktoloseinfmationabouttheprecisepositionofdetailedfacialstructuremicrotextures.Henceweapplymaxpoolingonlyt
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2010-2016精選論文2014-d14-1162
- 2010-2016精選論文2014-1408.5882v2
- 2010-2016精選論文2015-1503.04069
- 2010-2016精選論文2016-shahriari-bayesopt-ieee-2016
- 2010-2016精選論文2013-1312.5602v1
- 2010-2016精選論文2013-wang_iccv13
- 2010-2016精選論文2015_batch_normalization_accelerating_deep_network_training_by_reducing_internal_covariate_shift
- 高中物理選修3-3(2010-2016年)高考題精選(含解析)
- 山東高考英語(yǔ)作文題及范文(2010-2016)
- 2010-2016年南京中考數(shù)學(xué)試題及答案
- 2010-2016年碩士研究生畢業(yè)情況
- 當(dāng)下中國(guó)電影的救贖性研究(2010-2016).pdf
- 2010-2016司考國(guó)際私法司考真題及解析
- Research on the Impact of Human Resource Management On Employees Performance.pdf
- 2010-2016生命科學(xué)技術(shù)學(xué)院獲獎(jiǎng)情況
- 國(guó)產(chǎn)系列電影傳播效果研究(2010-2016年)_2129.pdf
- 2010-2016年考研英語(yǔ)二歷年真題及答案解析
- Impact of Human Resource Planning on Employee Performance in the Organization.pdf
- 次北固山下-++中考古詩(shī)賞析要點(diǎn)解析++2010-2016
- 北京大學(xué)社會(huì)工作考研真題2010-2016
評(píng)論
0/150
提交評(píng)論