版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、1,工程數(shù)學--微分方程,授課者:丁建均,Differential Equations (DE),教學網(wǎng)頁:http://djj.ee.ntu.edu.tw/DE.htm(請上課前來這個網(wǎng)站將講義印好)歡迎大家來修課!,2,授課者:丁建均Office: 明達館723室, TEL: 33669652 Office hour: 週一至週五的下午皆可來找我
2、160; 個人網(wǎng)頁:http://disp.ee.ntu.edu.tw/ E-mail: jjding@ntu.edu.tw,上課時間: 星期三 第 3, 4 節(jié) (AM 10:20~12:10) 星期五 第 2 節(jié) (A
3、M 9:10~10:00)上課地點: 電二143課本: "Differential Equations-with Boundary-Value Problem", 8th edition, Dennis G. Zill and Michael R. Cullen, 2016. (metric versi
4、on)評分方式:四次作業(yè)二次小考 15%, 期中考 42.5%, 期末考 42.5%,3,注意事項:請上課前,來這個網(wǎng)頁,將上課資料印好。 http://djj.ee.ntu.edu.tw/DE.htm (2) 請各位同學踴躍出席 。(3) 作業(yè)不可以抄襲。作業(yè)若寫錯但有用心寫仍可以有40%~90% 的分數(shù),但抄襲或借人抄襲不給分。(4) 我週一至週五下午都在辦公室,
5、有什麼問題 ,歡迎同學們來找我,4,上課日期,5,課程大綱,,,,Introduction (Chap. 1),,First Order DE,,Higher Order DE,,,,,解法 (Chap. 2),應用 (Chap. 3),,,,,解法 (Chap. 4),應用 (Chap. 5),多項式解法 (Chap. 6),,,Transforms,,,Partial DE (Chap. 12),,,Laplace Transfor
6、m (Chap. 7),,Fourier Series (Chap. 11),,Fourier Transform (Chap. 14),,矩陣解 (Chap. 8,只教不考),6,Chapter 1 Introduction to Differential Equations,1.1 Definitions and Terminology (術(shù)語),Differential Equation (DE): any equation
7、containing derivation (text page 2, definition 1.1) x: independent variable 自變數(shù) y(x): dependent varia
8、ble 應變數(shù),7,Note: In the text book, f(x) is often simplified as f notations of differentiation , , , , ………. Leibniz notation , , ,
9、 , ………. prime notation , , , , ………. dot notation , , , , ………. subscript notation,8,(2) Ordinary Differential
10、 Equation (ODE): differentiation with respect to one independent variable,(3) Partial Differential Equation (PDE): differentiation with respect to two or more independent variables,9,(4) Order of a Differentiation Equ
11、ation: the order of the highest derivative in the equation,,7th order,2nd order,10,(5) Linear Differentiation Equation:,,All of the coefficient terms am(x) m = 1, 2, …, n are independent of y.,Property of linear differe
12、ntiation equations: If and y3 = by1 + cy2, then,(if g(x) is treated as the input and y(x) is the output),11,(6) Non-Linear Differentiation Equation,12,(7) Explicit Solution (text page 6) The solution is express
13、ed as y = ?(x)(8) Implicit Solution (text page 7)Example: , Solution: (implicit solution)
14、 or (explicit solution),13,1.2 Initial Value Problem (IVP),A differentiation equation always has more than one solution. for , y = x, y = x+1 , y = x+2
15、 … are all the solutions of the above differentiation equation.General form of the solution: y = x+ c, where c is any constant. The initial value (未必在 x = 0) is helpful for obtain the unique solution.
16、 and y(0) = 2 y = x+2 and y(2) =3.5 y = x+1.5,,,14,The kth order differential equation usually requires
17、 k initial conditions (or k boundary conditions) to obtain the unique solution. solution: y = x2/2 + bx + c, b and
18、c can be any constant y(1) = 2 and y(2) = 3 y(0) = 1 and y'(0) =5 y(0) = 1 and y'(3) =2For the kth order differential equation, the initial conditions can be 0th ~ (k–1)th derivatives at some
19、 points.,(boundary conditions,在不同點),(boundary conditions,在不同點),(initial conditions ,在相同點),15,1.3 Differential Equations as Mathematical Model,Physical meaning of differentiation: the variation at certain time or certai
20、n place,Example 1:,,x(t): location, v(t): velocity, a(t): accelerationF: force, β: coefficient of friction, m: mass,16,A: population人口增加量和人口呈正比,Example 2: 人口隨著時間而增加的模型,17,T: 熱開水溫度, Tm: 環(huán)境溫度t: 時間,Example
21、 3: 開水溫度隨著時間會變冷的模型,18,大一微積分所學的:,的解,,問題:,(1) 若等號兩邊都出現(xiàn) dependent variable (如 pages 16, 17 的例子),(2) 若order of DE 大於 1,例如:,該如何解?,19,Review dependent variable and independent variable DE PDE and ODE Order of DE linear
22、DE and nonlinear DE explicit solution and implicit solution initial value; boundary value IVP,20,Chapter 2 First Order Differential Equation,2-1 Solution Curves without a Solution,Instead of using analytic methods
23、, the DE can be solved by graphs (圖解),slopes and the field directions:,,,x-axis,y-axis,,(x0, y0),the slope is f(x0, y0),,21,Example 1 dy/dx = 0.2xy,From: Fig. 2-1-3(a) in “Differential Equations-with Boundary-Va
24、lue Problem”, 8th ed., Dennis G. Zill and Michael R. Cullen.,22,From: Fig. 2-1-4 in “Differential Equations-with Boundary-Value Problem”, 8th ed., Dennis G. Zill and Michael R. Cullen.,Example 2 dy/dx = sin(y),
25、 y(0) = –3/2 With initial conditions, one curve can be obtained,23,Advantage: It can solve some 1st order DEs that cannot be solved by mathematics.Disadvantage:It can only be used for the case of the
26、 1st order DE.It requires a lot of time,24,Section 2-6 A Numerical Method,Another way to solve the DE without analytic methods independent variable x x0, x1, x2, ………… Find the
27、solution of Since approximation,,sampling(取樣),,前一點的值,,,,取樣間格,25,Example: dy(x)/dx = 0.2xy y(xn+1) = y(xn) + 0.2xn y(xn )*(xn+1 –xn).dy/dx = sin(x)
28、 y(xn+1) = y(xn) + sin(xn)*(xn+1 –xn).,,,後頁為 dy/dx = sin(x), y(0) = –1,(a) xn+1 –xn = 0.01, (b) xn+1 –xn = 0.1, (c) xn+1 –xn = 1, (d) xn+1 –xn = 0.1, dy/dx = 10sin(10x)
29、的例子,Constraint for obtaining accurate results: (1) small sampling interval (2) small variation of f(x, y),26,(a),(b),(c),(d),27,,Advantages -- It can solve some 1st order DEs that cannot be solved by mathemat
30、ics.-- can be used for solving a complicated DE (not constrained for the 1st order case) -- suitable for computer simulation Disadvantages -- numerical error (數(shù)值方法的課程對此有詳細探討),28,Exercises for Practicing (n
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 淺談實驗室廢液處理
- 時滯微分方程的預處理技巧.pdf
- 微分方程實驗報告
- 實驗室廢液處理協(xié)議修
- 基于小波與偏微分方程的圖像處理.pdf
- 圖像處理的偏微分方程方法研究.pdf
- 基于偏微分方程的圖像處理方法.pdf
- 基于偏微分方程超聲醫(yī)學圖像處理.pdf
- 實驗室規(guī)劃設計詳細處理方案
- 實驗室“三廢”處理程序
- 實驗室項目安全應急處理情況
- 實驗室廢棄物處理方案
- 基于偏微分方程的遙感圖像處理方法.pdf
- 微分方程——
- 實驗二微分方程與差分方程模型matlab求解
- 偏微分方程在圖像處理中的幾種應用.pdf
- 環(huán)境監(jiān)測實驗室廢液的處理
- 高校化學實驗室廢水處理
- 基于偏微分方程的圖像處理技術(shù)研究.pdf
- 雙曲型微分方程在圖像處理中的應用.pdf
評論
0/150
提交評論