2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、<p>  1700單詞,9100英文字符,2550漢字</p><p>  出處:Johannsson H, Hvannberg E P. Integration of air traffic control user interfaces[C]// Digital Avionics Systems Conference, 2004. Dasc 04. the. 2004:2.B.1-21-11 Vo

2、l.1.</p><p>  附錄:外文資料翻譯資料:</p><p>  INTEGRATION OF AIR TRAFFIC CONTROL USER INTERFACES</p><p>  Hlynur Johannsson , Ebba Pora Hvannberg</p><p><b>  Abstract</b

3、></p><p>  Communication and surveillance capabilities in oceanic air traffic control are improving and the amount of air traffic will increase significantly over the next decades. This requires new syste

4、ms and procedures to be incorporated into the oceanic air traffic controller workstation. The Icelandic Civil Aviation Administration(ICAA) is looking at ways to integrate the current set of user interfaces used at Reykj

5、avik Oceanic Center in an effort to increase controller performance. The workstation co</p><p>  Introduction</p><p>  Air traffic over the ocean will increase significantly in the next decades

6、and technologies and procedures used to control air traffic today will not be able to handle the increased traffic [1,2,3]. Even today the air traffic system is nearing capacity meaning that passengers are not getting th

7、e service they need and expect [2]. Increased traffic and emphasis on safety will demand reduced separation minima and more efficient routing for aircraft traveling over the ocean. With emerging technology</p><

8、;p>  Designers have been researching ways to incorporate changing technology into ATC workstations and move tools to the digital world. Some of the work has been focused on designing digital strips in place of paper s

9、trips [4]. Besides characterizing the working environment and practices of air traffic controllers in an ethnographic study, MacKay, et. al, have suggested several ideas for the ATC workstation and reportedly one of the

10、most successful one is to allow controllers to touch the flight stri</p><p>  The controller workstation at Icelandic Civil Aviation Administration(ICAA) consists of three graphical user interfaces, the FDPS

11、 system, which manages electronic flight strips, the Radar Display, which displays radar data and Situation Display, which is a backup system for the FDPS system and displays the data from flight strips on a geographical

12、 background. These systems are presented to the controller using up to four different computer screens making the workstation big and, according to the</p><p>  Temporal Display</p><p>  In this

13、 approach the radar data is processed and displayed in the FDPS system as a part of a flight strip. A new box is added to the flight strip that contains radar information for an aircraft position. This box is then update

14、d at the same rate as the radar data is in the radar display. The aircraft continue to be grouped with other aircraft in the same flight level as before. Additional information found in the radar data block is added to t

15、he flight strip. Obviously, the extra box and added i</p><p>  Spatial Display</p><p>  In this approach the FDPS system and Situation Display are integrated into the Radar Display. This means t

16、hat the information found on the flight strips is moved into the Radar Display for spatial presentation. Aircraft icons are used to distinguish between different surveillance sources and the route for each aircraft is di

17、splayed as a line between the waypoints defined in the aircrafts flight plan.</p><p>  Distinction between aircraft that a relevant controller is responsible for, from other aircraft is available through col

18、or-coding or by only displaying aircraft that is under the controller’s control. When a controller wants to give a clearance to a pilot he would right mouse click the aircraft in question and select from a menu what acti

19、on to take the selected aircraft. Information found in the flight strips will have to be added in a new design of the data block </p><p>  Synchronization between FDPS System and Radar Display</p><

20、;p>  in this approach the FDPS system and the Radar Display show the same sector(s) that a controller is responsible for.</p><p>  The controller has two Radar displays running; one that shows a global vi

21、ew of the sector and another that is synchronized with the FDPS. The FDPS system and the synchronized instance of the Radar Display have the same set aircraft visible . In the synchronized work station a controller worki

22、ng on a specific aircraft or set of aircraft in the FDPS system the controller sees the same aircraft(s) highlighted in the Radar Display, and vice versa. This would decrease controller’s search time when co</p>&

23、lt;p>  Improved Spatial Display Prototype</p><p>  The main issues that were raised during user testing of version one are how different surveillance sources are presented, cluttering, trust and improved

24、flight surveillance. Cluttering and trust are subjects for future research projects but the issues of how to present surveillance sources as well as how flight surveillance can be improved were addressed in version two o

25、f the spatial prototype. Intruding aircraft, projection of routes and representation of flight levels are features that are des</p><p>  Another feature presented in the prototype is to allow controllers to

26、visually project aircraft position, as defined in their flight plan, by moving a slider back and forth. The controllers that took part in the latter user testing were presented with these two ideas to get feedback on whe

27、ther it would be useful when conducting flight surveillance. Figure 7 shows a screenshot of the south sector for the improved prototype. The slider is in the bottom left hand comer.</p><p>  In order to give

28、 controllers more support when conducting flight surveillance flight level buttons have been added to the display, near the left vertical edge of the window. Only buttons that apply to flight levels under the controllers

29、’ control are displayed. These buttons are green when there are no conflicts in the relevant flight level but turn yellow or red if conflicts have been identified. Red and yellow colors are used to indicate a warning or

30、alert state for conflicts.</p><p>  Conclusions</p><p>  The result of the prototype design and user test is threefold. First, the suggested aircraft icons may not be enough to distinguish betwe

31、en surveillance sources. Research needs to be done in order to determine whether aircraft icons are enough distinction or whether other measure, such as color coding, needs to be added into the prototype.</p><

32、p>  Secondly, information cluttering needs to be examined to make sure that it will not be a problem if a transition to a spatial environment will be implemented at ICAA. In the formed user testing session controllers

33、 expressed concerns with the amount of information being displayed as well as amount of color coding used.</p><p>  Third, controllers were more positive during the second iteration regarding flight surveill

34、ance capabilities because of the added support that was added in the second design iteration. However, in order to truly determine whether the spatial prototype is better suited for flight surveillance and flight command

35、ing research needs to be conducted on an implemented prototype where these two aspects of air traffic control are examined. Such a study would determine whether using flight strips (tempora</p><p>  Paper pr

36、ototypes are considered one of the best prototyping techniques because it is the easiest method to use when building user interface designs [12]. It is however apparent that when the design is for a safety critical syste

37、m there are limitation to the paper prototypes because issues like trust and cluttering cannot be addressed without an implemented prototype running.</p><p>  集成的空中交通管制用戶界面</p><p><b>  緒論&

38、lt;/b></p><p>  在未來的幾十年,洋區(qū)空中交通管制的通信和監(jiān)視能力將明顯改善,空中交通流量將顯著增加。這就需要將新的制度和程序納入海洋空中交通管制工作站。冰島民航總局協會(ICAA)目前正在努力尋找整合雷克雅維克海洋中心使用的用戶界面的方法,以提高管制能力。工作站由三個不同的用戶界面組成,包括展示給管制員電子飛行進程單的飛行數據處理系統(FDPS),顯示雷達數據的雷達顯示系統和一個為FDPS

39、備份的現狀顯示系統。提出了三種集成方法, 并運用整體分析方法從中挑選一種。通過整體分析法和管制員的表現得出,集成飛行數據處理系統在空間雷達顯示的方法比較適合。紙質標準和合格管制員的表現可以反映出設計標準和從時間到空間的過渡。本文從兩個用戶測試論述了ICAA的設計標準和測試結果。</p><p><b>  引言</b></p><p>  在未來的幾十年里,洋區(qū)的空中

40、交通流量將會顯著增長,而現行的空中交通管制技術和方法將不足以應對空中交通流量的增長。即使在今天,空中交通系統容量已經接近飽和,致使乘客不能得到他們所需要和期望的相應服務。流量的增加和對安全的重視將要求縮小最小間隔和更有效的洋區(qū)空中交通航路。自動相關監(jiān)視廣播(ADS-B)和管制員與飛行員的數據鏈通信系統(CPDLC)等新技術的發(fā)展適應了不斷發(fā)展的空中交通管制領域。</p><p>  程序設計者一直在研究如何將空管

41、技術工作站和移動工具合并成一個數字世界。其中有些工作一直將注意力投放于如何用電子進程單取代紙質進程單。結合特定的工作環(huán)境和空管人員特定的學習,如MacKay等,提出了一些建議,其中最成功的想法是允許管制員用筆填寫電子進程單的同時在雷達顯示屏上突出顯示該飛機。通過增加飛行進程單使他們通過實物和計算機界面相對應,要么保持紙質進程單,要么用通過鍵盤和顯示器實現的電子進程單。多個領域的實踐證明多媒體的出現將會使得飛行進程單和雷達的結合成一個協調

42、的整體。他們指出,一體化整合了信息減少了負擔,但是卻降低了管制人員的心理素質。ATC工作站的所有單位作為一個協作的工作環(huán)境,需要管制員、飛行員、航空公司和電信運營商一同協調配合。塞尼亞已經將工作進行到開發(fā)數據鏈了,其中有動畫、觸摸屏、質地和顏色分級和手勢等特點。</p><p>  冰島民航空管局的管制室有三個顯示系統,分別是顯示電子進程單的飛行數據處理系統、顯示雷達數據的雷達顯示、對飛行數據處理系統和雷達數據的

43、備份顯示。這些系統用四個不同的顯示器呈現給管制員,這不僅占用了很多地方,而且在高度緊張的工作環(huán)境下對管制員來說是極為不方便的。目前ICAA正在尋找辦法來集成這些顯示界面以提高管制效率。本文為洋區(qū)空中交通管制提出了一種空間顯示的方法,可以簡化管制工作和更容易地轉換到新技術,提高管制效率。</p><p><b>  時間顯示</b></p><p>  在這種方法中,雷

44、達數據處理和飛行數據處理系統的顯示作為飛行進程單的一部分。添加一個新的顯示框,在雷達顯示器上顯示航空器位置信息。新增的這個顯示框同步更新航空器的雷達數據。將相同高度層的航空器分配到一個組,雷達數據的備注信息也增加到這個新的顯示框。顯然,航空器在被雷達覆蓋的時候這個額外的顯示框和增加的信息是唯一可用的;如果航空器沒有被雷達覆蓋,則這個航空器的相關信息就不會顯示在屏幕上。</p><p><b>  空間顯

45、示</b></p><p>  在這種方法中,飛行數據處理系統數據和航空器的飛行趨勢將集成顯示到雷達屏幕上。這就意味著將飛行進程單的信息轉移到空間顯示的顯示屏上。飛機的圖標用于區(qū)分不同監(jiān)測來源,將每個航空器和航路點的連線顯示加入航空器飛行計劃。管制員區(qū)分航空器可以通過顏色和編碼,或者只顯示該管制員管制下的航空器。當管制員需要給飛行員指令時,只需要右鍵點擊航空器并從菜單中選出需要發(fā)送的指令就行了。要在飛

46、行進程單上添加這些信息需要增加一個數據塊的設計。 </p><p>  FDPS系統和雷達同步顯示</p><p>  在這種方法中,將飛行數據處理系統和雷達信息都同步顯示在同一個頁面供管制員參考。</p><p>  管制員有兩個雷達顯示器同時運行,一個顯示全景另一個同步顯示飛行數據處理系統信息。飛行數據處理系統和雷達同步顯示的是同一可見航空器。在一個同步的管制室

47、中,管制員對飛行數據處理監(jiān)視到得航空器進行的操作和管制員在雷達屏幕上看到的突出顯示的航空器是同一架,反之亦然。這樣就減少了管制員對比搜索航空器的時間。因為這只是一個備份系統,而且不是用來管制航空器的,所有沒有同步實施的現狀顯示。 </p><p><b>  改進的空間顯示</b></p><p>  用戶測試的版本是來自不同來源的監(jiān)視信息,混亂、可靠性和改進飛行監(jiān)

48、視是主要的問題?;靵y和可靠性是未來工作的主要努力方向,但是目前的問題是如何解決信息源以及如何在下一個版本改善飛行監(jiān)控能力。入侵航空器,即航空器偏離分配的飛行計劃,可能危害飛行安全,空管系統的安全和效率。因此,需要一致性監(jiān)測,檢測偏差以便糾正危害飛行安全的行為。在空間顯示的航空器如果飛行計劃與其不匹配,則標牌會以紅褐色標注。</p><p>  該標準的另一個特點是允許管制員目視航空器的位置,并通過來回移動滑塊來定

49、義其飛行計劃。參加后續(xù)測試的管制員反饋了這兩個問題,希望能更有效的監(jiān)控航空器。</p><p>  為了給管制員更多監(jiān)控航空器的幫助,將高度層按鈕添加到了顯示窗口左側垂直邊緣附近。只有適用于管制員的高度層按鈕被顯示出來。當空中交通沒有沖突的時候這些按鈕時綠色的,一旦有沖突,按鈕就會變成黃色或紅色以便分辨。紅色和黃色被用于告警或提醒沖突狀態(tài)。</p><p><b>  總結<

50、;/b></p><p>  標準設計和用戶測試的結果有三點。首先,受管制航空器的標牌沒有足夠的區(qū)分監(jiān)視來源。因此需要進一步研究以確定航空器是否要將區(qū)分措施添加到標準中,例如彩色編碼。</p><p>  其次,需要對混亂的信息進行檢查,以確保航空器不會再穿越高度的時候出現問題,違反ICAA規(guī)定。在用戶測試過程中,管制員表達了對信息量的顯示和色彩編碼數量的要求。</p>

51、<p>  再次,因為在第二代標準里添加了迭代技術支持,管制員更關注航空器容量監(jiān)視能力。然而,想要真正確定的空間顯示是否更能適用于飛行監(jiān)視和空中交通指揮,需要在標準設計和空中交通管制兩個方面驗證。這個研究將決定是飛行進程單(時間)還是空間顯示更適合空中監(jiān)視和空中交通指揮。有趣的是,當管制員被問及他們是否考慮將來空中交通管制使用空間顯示時,有五六個人說會。這個明顯的信號表明,空間顯示設計將是未來研究的重點。</p>

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論