-
下載積分: 13 賞幣
上傳時間:2024-01-07
頁數(shù): 0
大?。?0.77(MB)
子文件數(shù):
-
下載積分: 13 賞幣
上傳時間:2024-01-07
頁數(shù): 0
大小: 0.92(MB)
子文件數(shù):
-
下載積分: 14 賞幣
上傳時間:2024-01-07
頁數(shù): 0
大?。?1.38(MB)
子文件數(shù):
-
下載積分: 13 賞幣
上傳時間:2024-01-07
頁數(shù): 0
大?。?0.58(MB)
子文件數(shù):
-
簡介:FINITEELEMENTSINANALYSISANDDESIGN422006950–959WWWELSEVIERCOM/LOCATE/FINELREVIEWFINITEELEMENTANALYSISOFVEHICLE–BRIDGEINTERACTIONLESLAWKWASNIEWSKIA,?,HONGYILIB,JERRYWEKEZERB,JERZYMALACHOWSKICAWARSAWUNIVERSITYOFTECHNOLOGY,ALARMIILUDOWEJ16,00637WARSZAWA,POLANDBFLORIDAARECEIVEDINREVISEDFORM21JANUARY2006ACCEPTED21JANUARY2006AVAILABLEONLINE13MARCH2006ABSTRACTTHISPAPERPRESENTSRESULTSOFTHEFINITEELEMENTFEANALYSISOFDYNAMICINTERACTIONBETWEENAHEAVYTRUCKANDASELECTEDHIGHWAYBRIDGEONUS90INFLORIDAFEANALYSISOFVEHICLE–BRIDGEINTERACTIONWASCONDUCTEDUSINGCOMMERCIALPROGRAMLSDYNAANDTHESUPERCOMPUTERATTHEFLORIDASTATEUNIVERSITYDEVELOPMENTANDIMPLEMENTATIONOFADETAILEDFETRUCKMODELWITH3DSUSPENSIONSYSTEMS,PNEUMATICANDROTATINGWHEELS,APPROPRIATECONTACTALGORITHMS,ALLOWEDFORREALISTICREPRESENTATIONOFTHEACTUALVEHICLEDYNAMICLOADINGSEVERALSTATICANDDYNAMICFIELDTESTSWEREPERFORMEDONTHESAMEBRIDGETHEEXPERIMENTALDATAWASUSEDFORVALIDATIONOFTHEFEMODELSOFTHEBRIDGEANDTHETRUCKNUMERICALRESULTSWEREFOUNDTOMATCHWELLWITHTHEEXPERIMENTALDATARESULTSPRESENTEDINTHEPAPERDEMONSTRATEASIGNIFICANTPOTENTIALOFUSINGCOMPUTATIONALMECHANICSANDLSDYNACODEFORTHOROUGHINVESTIGATIONOFTHEVEHICLE–BRIDGEINTERACTION,DYNAMICIMPACTFACTORS,ANDTHEULTIMATELOADINGOFBRIDGES?2006ELSEVIERBVALLRIGHTSRESERVEDKEYWORDSVEHICLE–BRIDGEINTERACTIONIMPACTFACTORBRIDGEDYNAMICSFINITEELEMENTANALYSISCOMPUTERSIMULATIONLSDYNACONTENTS1INTRODUCTION9502DESCRIPTIONOFTHEMODELEDBRIDGE9513FIELDTEST9524DEVELOPMENTOFFEBRIDGEMODEL95241FEMODELOFTHETRUCK9535VALIDATIONOFFEMODELS9546NUMERICALANDEXPERIMENTALANALYSISOFVEHICLE–BRIDGEINTERACTION9547SUMMARYANDCONCLUSIONS957ACKNOWLEDGEMENTS958REFERENCES9581INTRODUCTIONNONLINEARFINITEELEMENTFEMETHODSARENOWADAYSCOMMONLYUSEDTOSOLVEENGINEERINGPROBLEMSONESUCH?CORRESPONDINGAUTHORTEL48227519552FAX48228256532EMAILADDRESSESLKWASNIEWSKIILPWEDUPLLKWASNIEWSKI,LIHONGYENGFSUEDUHLI,WEKEZERENGFSUEDUJWEKEZER,MALACHOWSKIWMEWATEDUPLJMALACHOWSKI0168874X/SEEFRONTMATTER?2006ELSEVIERBVALLRIGHTSRESERVEDDOI101016/JFINEL200601014ENGINEERINGAREAISTHEEFFICIENTMANAGEMENTOFHIGHWAYFACILITIES,ESPECIALLYBRIDGES,WHERETHEKNOWLEDGEOFACTUALDYNAMICLOADEFFECTS,LOADCARRYINGCAPACITY,ANDCURRENTCONDITIONISCRITICALINMAKINGMANAGEMENTDECISIONSANDINESTABLISHINGPERMISSIBLEWEIGHTLIMITSSIGNIFICANTDYNAMICEFFECTSCANBETRIGGEREDBYINCREASINGLYHEAVIERVEHICLES,WHICHARENOWUSEDONOURHIGHWAYS1,2ADDITIONALDYNAMICEFFECTSAREACCOUNTEDFORBYDYNAMICIMPACTFACTORSINTRODUCEDINBRIDGEDESIGNCODESTHEIMPACTFACTORIM13,ALSOREFERREDTOAS952LKWASNIEWSKIETAL/FINITEELEMENTSINANALYSISANDDESIGN422006950–959TRUCKONEASTBOUNDSOUTHNORTH1075M12345X2400M12000M561075M062M062M062M062M07M07M2500M2500MTRUCKONWESTBOUNDFIG2BRIDGECROSSSECTIONANDTRUCKPOSITIONSDURINGFIELDEXPERIMENTS3FIELDTESTSTATICANDDYNAMICTESTSWERECONDUCTEDONTHEBRIDGETWOTRUCKSLOADEDWITH12CONCRETEBLOCKSEACHFIG5WEREUSEDFORLOADINGTHEFRONT,DRIVE,ANDREARAXLELOADSWERE50KN1124KIP,100KN2248KIPAND169KN380KIP,RESPECTIVELYTHETOTALWEIGHTWASAPPROXIMATELY319KN717KIP,WHICHISCLOSETOTHE325KN731KIPASSPECIFIEDBYAASHTOSTANDARDSPECIFICATIONSFORTHEHS20–44TRUCK13THESTATICTESTRESULTSWEREUSEDTODETERMINETHEWHEELLOADDISTRIBUTIONFACTORSFORGIRDERSANDASREFERENCEDATAFORCALCULATIONOFIMPACTFACTORSTHELONGITUDINALTRUCKPOSITIONWASDETERMINEDTOYIELDTHEMAXIMUMSTRESSESATTHEMIDDLESECTIONOFTHEFIRSTSPANTHEDYNAMICTESTSINCLUDEDPASSESOFONEANDTWOTRUCKSSIDEBYSIDE,WITHANDWITHOUTAPIECEOFWOODPOSITIONEDACROSSTHEDECKAWOODENPLANK,40MM157INTHICKAND400MM157INWIDEWASPLACEDACROSSTHEMIDDLESECTIONOFTHEEASTSPANTOSIMULATEMAJORDETERIORATIONOFTHEDECKSURFACEMOREOVER,ITWASEXPECTEDTHATTHEPLANKWOULDHELPEXCITEDOMINANTFLEXURALMODESCORRESPONDINGTOLOWFREQUENCIES16TWOTRUCKSPEEDSWEREUSEDMEDIUM48KM/H30MPHANDHIGHSPEED80KM/H50MPHTHEEASTSPANANDTHEMIDDLESPANWEREINSTRUMENTEDFORALLTESTSFIG1DISPLACEMENT,STRAIN,ANDACCELERATIONDATAWERECOLLECTEDATTHESELECTEDPOINTSWHERETHEBRIDGERESPONSEWASEXPECTEDTOBEWELLREPRESENTEDADDITIONALLY,FOURACCELEROMETERSWEREPLACEDONONEOFTHEVEHICLESTOPROVIDEDATAFORVALIDATIONOFTHETRUCKMODELMOREDETAILSOFTHETESTDATAANDEXPERIMENTALRESULTSAREPRESENTEDIN174DEVELOPMENTOFFEBRIDGEMODELTHEFEMODELOFONESPANINCLUDESALLFIVESTRUCTURALCOMPONENTSTHESLAB,SIXBEAMS,BRIDGEBARRIERS,DIAPHRAGMS,ANDNEOPRENEPADSFIG3SHOWSACUTAWAYSEGMENTOFTHEFEMODELFORONESPANCONCRETEPARTSOFTHEBRIDGEAREBUILTOFFULLYINTEGRATEDSOLIDELEMENTSWITHEIGHTORSIXNODESALLREFIG3ACUTAWAYSECTIONOFTHEFEBRIDGEMODELBARSANDSTRANDSAREMODELEDUSING1DBARELEMENTSWITHNODESCOINCIDINGWITHCORRESPONDINGNODESOFTHESOLIDELEMENTSTHELOCATIONSOFSOMEREBARSINTHEFEMODELWERESLIGHTLYREALIGNEDWHENEVERNECESSARYTOFITINTOGEOMETRICFEMESHOFTHEBRIDGENEOPRENEPADSAREREPRESENTEDBY3DSOLIDELEMENTSWITHVISCOELASTICMATERIALPROPERTIES18DIMENSIONSOFELEMENTSINTHEBRIDGEMODELWEREOPTIMIZEDCONSIDERINGTHELOCATIONOFTHEREINFORCEMENT,REQUIREMENTSFORTIREDECKCONTACTALGORITHM,INTEGRATIONTIMESTEP18ANDTOTALNUMBEROFFEELEMENTSEACHGIRDERHAS24NO131860MPALOWRELAXATIONSTRAIGHTSTRANDSATTHEBOTTOMFLANGETHEMESHSIZEREQUIREMENTMAKESITUNABLETOMODELINDIVIDUALLYALL24STRANDSTHEREFORESEVERALSTRANDSWERELUMPEDTOGETHERTOREPRESENTTHECORRECTSTIFFNESSOFTHEGIRDERCROSSSECTIONASPECIALLSDYNAMATERIALMODELCALLED“CABLE”18WASAPPLIEDTOINTRODUCEPRESTRESSINGFORCESINTHERODELEMENTSTHISMATERIALMODELALLOWEDFORINTRODUCTIONOFINITIALTENSILEFORCEBYDEFININGAPPROPRIATEINITIALELONGATIONTHEPRESTRESSMODELAPPEARSTOBECRITICALWHENTHEBRIDGEGIRDERSARELOADEDUPTOFAILUREOVER204,000FEWEREUSEDFORONESPANOFTHEBRIDGEMODEL
下載積分: 10 賞幣
上傳時間:2024-03-13
頁數(shù): 10
大小: 0.69(MB)
子文件數(shù):
-
簡介:中文中文6700漢字,漢字,4500單詞,單詞,24000英文字符英文字符出處出處OCHSENDORFJASELFANCHOREDSUSPENSIONBRIDGES/JJOURNALOFBRIDGEENGINEERING,1999,42151156自錨式懸索橋摘要摘要本文總結了自錨式懸索橋的起源并分析其未來發(fā)展,探討了這種獨特橋梁形式的發(fā)展狀況以及在過去一個世紀它的用途和優(yōu)缺點。位于日本大阪的此花大橋就是這種類型,它也為研究比較傳統(tǒng)懸索橋理論與有限元模型結果提供了一個案例。本文的最后部分評估自錨式懸索橋設計的潛力,并為設計工程師提供建議。本文旨在大體上描述自錨式橋梁特別是此花大橋的結構性能。引言自錨式懸索橋不需要大量的端錨,因此不同于傳統(tǒng)懸索橋。相反,承載纜索拉力組件的主纜固定到每一端橋面板或加勁梁上,因此末端支撐只須抵消張力的垂直分量而不需要調節(jié)外錨。因為加勁梁支撐纜索拉力,所以必須在安裝主纜之前安放好加勁梁。這種與傳統(tǒng)懸索橋截然相反的施工順序為了適應跨徑而限制了自錨的形式。也不同于傳統(tǒng)懸索形式,對自錨式橋梁的分析必須包括橋面板較大軸力的影響。帶著這些問題,本文將探討這種橋型的歷史發(fā)展、結構分析和潛在應用,并對最近建成的自錨式懸索橋總結一些反思。歷史發(fā)展19世紀下半葉,奧地利工程師JOSEFLANGER和美國工程師CHARLESBENDER獨立構思了自錨式懸索橋(1936A穆林斯)。在1859年LANGER第一個寫下他的想法,而BENDER在1867年發(fā)布專利(1867年“專利”)確定自己的所有權。他們二人都沒有使用連續(xù)纜索,而是把主纜固定在跨中梁段和橋的兩1新澤西州普林斯頓大學土木工程系環(huán)境管理研究生2新澤西州普林斯頓大學土木工程系環(huán)境管理教授GORDONYSWU端。1870年LANGER在波蘭建設了用于的鐵路交通小自錨式橋梁,而BENDER顯然從未建造過自錨式橋梁。雖然這些工程師并沒有直接影響未來的設計,但是在20世紀初的德國,自錨式懸索橋已流行開來。1915年德國工程師在科隆建造了第一座橫跨萊茵河的大型自錨式懸索橋(1936B穆林斯)(圖1)。這座科隆道依茨橋主跨為185米,在吊索安裝到位之前是采用臨時腳圖11915年德國原科隆道依茨大橋(1990年普拉德)圖21928年匹茲堡第七街區(qū)大橋除了20世紀20年代的匹茲堡橋,美國只有兩座自錨式懸索橋即1933年建成的跨度為69米和1939年建成的跨度為107米的兩座橋梁,它們分別橫跨密蘇里州小NIANGUA河印第安納州沃巴什河(1941年GRONQUIST)。除了20世紀20年代的匹茲堡橋,美國只有兩座自錨式懸索橋即1933年建成的跨度為69米和1939年建成的跨度為107米的兩座橋梁,它們分別橫跨密蘇里州小NIANGUA河印第安納州沃巴什河(1941年GRONQUIST)。20世紀30年代到40年代間德國工程師一直都在修建自錨式懸索橋,但戰(zhàn)后重建的橋梁則以斜拉橋為主。1954年,德國工程師在德國杜伊斯堡建成了最后一個規(guī)模巨大的自錨式懸索橋,其跨度為230米(1990年普拉德)。1941年,由弗里茨萊昂哈特設計的跨度為378米的科隆羅登基興橋使用了常規(guī)錨定,超越了科隆米爾海姆大橋,成為歐洲最長的懸索橋(1984B萊昂哈特)。萊昂哈特繼續(xù)設計更長的懸掛跨度,而他付出的努力得到了回報,最終在1961年作出一個在艾默里奇境內的萊茵河口采用單面懸索橋的設計。雖然沒能建成,但萊茵哈特認為這是他“最好設計”(1984B萊昂哈特)。三十年后,日本工程師于1990年成功地在日本大阪的此花大橋上重現(xiàn)了萊茵哈特單索面的想法?,F(xiàn)代自錨式橋梁大阪此花大橋于1990年建成,主跨為300米,是自1954年以來第一座用于交通營運的大型自錨式懸索橋,其創(chuàng)新設計之處在于考慮到了自錨的形式(圖4)。除了其自身錨定,此花大橋是第一座大型單索面懸索圖41990年日本此花大橋橋,其主纜和斜吊索沿行車道中心與單個垂直平面對齊。087噸每平方米(170呎)的自重小于300米跨度的典型橋梁,可等同于10至20萬噸每平方米(200400呎)(1994年未發(fā)表的BUCHWALTER)。通過將垂度和跨度之比提高到16,其價值便高于最具可比性的懸索橋,設計師也可減小橋板上的軸向力。加勁梁高為317米,或為主跨1/95,此時橋梁看起來很修長。表1概述了此花大橋的常規(guī)尺寸數(shù)據(jù)(圖5為標高圖)。表1此花大橋尺寸尺寸(1)值(2)主跨總懸跨垂度跨度梁厚梁寬梁厚主跨自重通行能力300M984FT540M1,7712FT16317M104FT265M869FT195087TONS/M2170PSF4車道圖5此花大橋標高此花大橋的成功來自三個主要設計方面(1)架設方法;(2)斜吊索的使用;(3)鋼箱梁的使用。首先,預制梁有五大構件且每個部分重達2700噸,故需要一個有效的施工方案。施工過程中,浮式起重機把這些部分吊裝到位,再用兩主跨之間的臨時支撐固定好它們(1992年嘉美等)。兩座索塔建成后,施工員使用預制的平行股索安裝主纜,從而避免了費時的制索過程。第二個成功之處在于斜吊索,斜吊索的預拉伸避免了負載所引起的松弛現(xiàn)象。預拉伸也抬高了主梁,保了安裝過程中的精確控制。第三,倒梯形箱梁設有足夠的抗彎承
下載積分: 10 賞幣
上傳時間:2024-03-16
頁數(shù): 8
大?。?0.29(MB)
子文件數(shù):
-
簡介:TIMEDEPENDENTBEHAVIOUROFCONCRETEBEAMSPRETENSIONEDBYCARBONFIBREREINFORCEDPOLYMERSCFRPTENDONSPATRICKXWZOUA,,SHOUPINGSHANGBAFACULTYOFTHEBUILTENVIRONMENT,UNIVERSITYOFNEWSOUTHWALES,THEREDCENTRE,ROOM3014,3RDFLOOR,SYDNEY,NSW,AUSTRALIABHUNANUNIVERSITY,CHANGSHA,CHINARECEIVED20JANUARY2005RECEIVEDINREVISEDFORM24MAY2006ACCEPTED19JUNE2006AVAILABLEONLINE22AUGUST2006ABSTRACTDUETOITSNONCORROSIVEANDHIGHTENSILESTRENGTHPROPERTIES,CARBONFIBREREINFORCEDPOLYMERSCFRPHASATTRACTEDRESEARCHERS’INTERESTSWORLDWIDETOINVESTIGATETHEFEASIBILITYANDEFFECTIVENESSOFUSINGCFRPASREINFORCEMENTSORPRESTRESSINGTENDONSINCONCRETESTRUCTURESHOWEVERUNTILNOWTHESESTUDIESHAVEBEENMAINLYINTHEFORMOFEXPERIMENTALTESTSANDTHEREISLACKOFTHEORETICALFRAMEWORKPROVIDEDTHISPAPERFIRSTPROPOSESANANALYTICALMETHODTOPREDICTTHETIMEDEPENDENTBEHAVIOUR,INCLUDINGCONCRETESTRAINS,CURVATUREANDDEFLECTIONASWELLASLOSSOFPRESTRESS,OFCONCRETEBEAMSPRESTRESSEDBYCFRPTENDONS,UNDERSUSTAINEDSERVICELOADCONDITIONTHEPAPERTHENPRESENTSTHREEILLUSTRATIVEEXAMPLESOFHOWTOUSETHISANALYTICALMETHODTOCALCULATETHETIMEDEPENDENTCONCRETESTRAINS,CURVATUREANDDEFLECTIONOFCONCRETEBEAMSPRETENSIONEDBYCFRPTENDONSITISCONCLUDEDTHATTHEPROPOSEDTHEORETICALFRAMEWORKISSUITABLEFORANALYSISOFTHETIMEDEPENDENTPERFORMANCEOFTHECONCRETEBEAMSPRETENSIONEDBYCFRPTENDONSANDTHEBEHAVIOUROFSUCHBEAMSARECOMPARABLETOTHOSEWITHSTEELANDTHEREFORECFRPCANBEEFFECTIVELYUSEDASPRESTRESSINGTENDONSINCONCRETEBEAMS?2006ELSEVIERLTDALLRIGHTSRESERVEDKEYWORDSCARBONFIBREREINFORCEDPOLYMERTENDONTIMEDEPENDENTBEHAVIOURCONCRETEBEAMSDEFLECTIONSTRAIN1INTRODUCTIONINPRESTRESSEDCONCRETEFLEXURALMEMBERSTHEPRESTRESSINGFORCEISAPPLIEDTOTHECONCRETEINORDERTOREDUCETHECURVATURE,THEDEFLECTIONANDTHEEXTENTOFCRACKINGOVERAPERIODOFTIMETHEPRESTRESSINGFORCEINTHEMEMBERWILLPROGRESSIVELYDECREASEDUETOCREEPANDSHRINKAGEOFTHECONCRETE,ASWELLASRELAXATIONOFTHETENDONS,IE,THELOSSOFPRESTRESSINCREASESWITHTIMETHELOSSOFPRESTRESSRESULTSINAGRADUALINCREASEINTHEDEFLECTIONSWHICHAFFECTSTHESERVICEABILITYOFTHEMEMBERIFFRPTENDONSARETOBEUSEDASALTERNATIVESTOSTEELTENDONSINPRESTRESSEDCONCRETE,ITISIMPORTANTTOUNDERSTANDTHEIMPLICATIONSANDEFFECTSONTHETIMEDEPENDENTSTRUCTURALBEHAVIOURTHEMATERIALPROPERTIESOFTHETENDONSTHATMOSTAFFECTTHESERVICEABILITYPERFORMANCEOFPRESTRESSEDSTRUCTURESARETHEELASTICMODULUSEPANDTHEFINALPERCENTAGERELAXATIONRORCREEPCOEFFICIENT,/PSOMEFRPTENDONSMAYRELAXORCREEPMORETHANPRESTRESSINGSTEELTENDONSANDTHEELASTICMODULUSMAYBESUBSTANTIALLYLOWERTHANTHATOFSTEELHIGHERCREEPINTHETENDONSRESULTSINAGREATERLOSSOFPRESTRESSDUETORELAXATION,WHILSTALOWERELASTICMODULUSMEANSTHATTHETIMEDEPENDENTDEFORMATIONSOFTHECONCRETEDUETOCREEPANDSHRINKAGECAUSELESSLOSSOFPRESTRESSITMAYBENOTEDATTHISPOINTTHATTHISPAPERWILLFOCUSONCARBONFIBREREINFORCEDPOLYMERSCFRPDUEITSSUPERIORPROPERTIESINTERMSOFLOWCREEPRELAXATIONANDHIGHTENSILESTRENGTHASWELLASMODERATEDELASTICMODULUSHOWEVERTHEMETHODPRESENTEDINTHISPAPERISAPPLICABLETOALLTYPESOFFRPTENDONSMANYRESEARCHERSHAVEPROVIDEDEXPERIMENTALRESULTSINDICATINGTHATFRPINFACTCOULDBEANEFFECTIVEALTERNATIVETOSTEELFORPRESTRESSINGCONCRETEBEAMS11,1,2,8,13–15,6ATSERVICELOADLEVELASWELLASATULTIMATELIMITEDSTATEHOWEVERTHEREISAGAPINPROVIDINGSOUNDTHEORETICAL09500618/SEEFRONTMATTER?2006ELSEVIERLTDALLRIGHTSRESERVEDDOI101016/JCONBUILDMAT200606008CORRESPONDINGAUTHORTEL612938555236EMAILADDRESSPZOUUNSWEDUAUPXWZOUWWWELSEVIERCOM/LOCATE/CONBUILDMATCONSTRUCTIONANDBUILDINGMATERIALS212007777–788CONSTRUCTIONANDBUILDINGMATERIALSNI??PID7TMI?MS?PIDPD8TTHEINITIALCONCRETESTRAINANDSTRESSATYBELOWTHETOPFIBREAREEI?E0ITYJID9TRI?ECEI?ECDE0ITYJITD10TTHECORRESPONDINGSTRESSESINTHETENDONSANDTHEREINFORCEMENTCANBEDETERMINEDUSINGTHELINEARMATERIALPROPERTIESFORFRPPRESTRESSINGTENDONORREINFORCEMENT23SHORTTERMANALYSISOFACRACKEDPRETENSIONEDSECTIONATANYTIMET,IFTHEAPPLIEDMOMENTATASECTIONISGREATERTHANTHECRACKINGMOMENT,CRACKINGWILLOCCURANDATEACHCRACKTHECONCRETEBELOWTHENEUTRALAXISISINEFFECTIVETHESHORTTERMBEHAVIOUROFTHECRACKEDCROSSSECTIONMAYBECALCULATEDUSINGASIMPLEELASTICANALYSISWITHTHEFOLLOWINGTHREEASSUMPTIONS1PLANESECTIONSREMAINPLANEANDTHEREFORETHESTRAINDISTRIBUTIONISLINEAROVERTHEDEPTHOFTHESECTION2PERFECTBONDEXISTSBETWEENTHECONCRETEANDFRPTENDONSANDREINFORCEMENTS3INSTANTANEOUSMATERIALBEHAVIOURISLINEARELASTICFORCONCRETEANDFRPTHEINSTANTANEOUSSTRAINSANDSTRESSESONACRACKEDSECTIONARESHOWNINFIG3THEHORIZONTALEQUILIBRIUMANDMOMENTEQUILIBRIUMCANBEUSEDINTHECROSSSECTIONTOFINDTHECONCRETESTRAINATTOPFIBREE0IANDTHEDEPTHOFNEUTRALAXISDN,THATISTPTTSTCTCS?0D11TMS?TPDPTTSDS2TCDZTCSDS1D12TWHEREC,CS,TSANDTPMAYBEEXPRESSEDASFUNCTIONSOFDNANDE0I,ASFOLLOWSC?12ECE0IBDND13TCS?ES1AS1?E0IDDN?DS1TDND14TTS?ES2AS2?E0IDDS2?DNTDND15TTP?EPAPEPETJECEJT?E0IDDP?DNTDN??D16TWHEREEPE?PEAPEPD17TECE?1EC?PEAG?PEE2IG??D18TBYATRIALANDERRORPROCEDURE,THEDEPTHOFNEUTRALAXISDNANDTHESTRAINATTOPFIBREE0ICANBEFOUNDHENCETHECURVATUREJICANBEDETERMINEDJI??E0IDND19TAFTERDNISDETERMINED,THEPROPERTIESOFTHEFULLYCRACKEDTRANSFORMEDSECTIONWITHRESPECTTOTHETOPREFERENCESURFACEA,BANDIMAYBECALCULATEDANDTHESHORTTERMSTRAINATTHETOPFIBRE,THECURVATUREANDHENCETHEDISTRIBUTIONMAYBEFOUNDBYEQS5AND6,RESPECTIVELYFURTHERMORE,WHENDNANDE0IAREKNOWN,THESTRAINSANDSTRESSINTHETENDONSORREINFORCEMENTSAREALSOREADILYDETERMINED24TIMEDEPENDENTANALYSISOFCROSSSECTIONINPRETENSIONEDCONCRETEBEAMS,THEBONDEDTENDONSANDREINFORCEMENTPROVIDERESTRAINTTOTHETIMEDEPENDENTSHORTENINGOFCONCRETECAUSEDBYCREEPANDSHRINKAGETHETENDONANDREINFORCEMENTAREGRADUALLYCOMPRESSEDEQUALANDOPPOSITETENSILEFORCESAREAPPLIEDTOTHECONCRETEATEACHLEVELOFTHEBONDEDTENDONANDREINFORCEMENT,THEREBYREDUCINGTHECOMPRESSIONCAUSEDBYPRESTRESSITISTHETENSILEFORCESAPPLIEDGRADUALLYATEACHLEVELOFBONDEDREINFORCEMENTTHATRESULTINSIGNIFICANTTIMEDEPENDENTCHANGESINCURVATUREANDDEFLECTION10THESUMOFTHETIMEDEPENDENTCHANGEOFSTRAINATANYDEPTHYBELOWTHETOPFIBREOFTHECROSSSECTIONDEMAYBEEXPRESSEDINTERMSOFTHECHANGEINTHETOPFIBRESTRAINDE0ANDTHECHANGEOFCURVATUREDJDE?DE0TYDJD20TTHETIMEANALYSISOFTHECROSSSECTIONCONSIDEREDHEREUSESTHEAGEADJUSTEDEFFECTIVEMODULUSMETHODAEMMTOGETHERWITHARELAXATIONAPPROACHTHEAPPLICATIONWASPROPOSEDBYGILBERT9INTHERELAXATIONPROCEDURE,THESTRAINSTATEISASSUMEDTOBEHELDCONSTANTTHROUGHOUTAGIVENTIMEINTERVALIFTHETOTALSTRAINISHELDCONSTANTANDTHEDBAS1APAS2CS1TPΣCISTRAINATDIFFERENTAGESCROSSSECTIONSTRESSESANDSTRESSRESULTANTSAFTERLOADINGATT0TRANSFERATT1BEFORELOADINGATT1AFTERLOADINGTS2CCΣPΣS1ΣS2DNΕ0IFIG3DISTRIBUTIONOFSTRAINANDSTRESSOFACRACKEDSECTIONPXWZOU,SSHANG/CONSTRUCTIONANDBUILDINGMATERIALS212007777–788779
下載積分: 10 賞幣
上傳時間:2024-03-13
頁數(shù): 12
大小: 0.27(MB)
子文件數(shù):
-
簡介:中文中文13萬字萬字出處出處CASASJRRELIABILITYBASEDASSESSMENTOFMASONRYARCHBRIDGESJCONSTRUCTIONBUILDINGMATERIALS,2011,25416211631畢業(yè)設計(論文)資料附件畢業(yè)設計(論文)資料附件外文文獻原文及譯文外文文獻原文及譯文學生姓名學生姓名學號號班級橋梁工程橋梁工程專業(yè)業(yè)橋梁工程橋梁工程指導教師指導教師2014年4月橋的疲勞壽命的影響?,F(xiàn)在存在著幾個經驗公式和數(shù)值方法來確定圬工拱的承載能力MEXE法,最大應力分析法,極限分析(機理)法1–3,固體力學方法(卡氏非線性分析,有限元分析,離散元素分析)。這些方法也存在于很多以計算機為基礎的應用程序中ARCHIEM,RING,DIANA。近日,有人在研究圬工長期性能的反復荷載作用5,6提出在正常使用情況下,循環(huán)荷載作用下疲勞失效的可能性遠低于極限荷載4反復作用下的一種新的方法來分析圬工拱,存在著這種可能性。分析圬工拱可用的方法在本質上是確定的。所以在參與作答的所有變量都被假定為確定值的情況下他們可以預測極限承載力,但是由于涉及幾何形狀,材料和加載的不確定性使得這可能顯示的并不是真實的情況。最近幾年橋梁結構的可靠性評估已成功落實和執(zhí)行。這些方法假定所涉及的變量在本質上具有不確定性。在混凝土(鋼筋混凝土和預應力)結構橋梁或鋼結構領域都有了大量的經驗。一些經驗表明,通過高效,準確的基于概率的評估方法712可以節(jié)約大量的金錢。然而,這種方法幾乎很少應用到圬工拱橋中。其中一個原因是很難定義這種類型結構的可靠失效準則。另一個原因是缺乏磚石和填充材料的材料特性的統(tǒng)計數(shù)據(jù)。實驗測試表明,一個拱的失效通常是因整體的破壞而不是因橋梁一個構件的故障。所以在大多數(shù)的情況下,橋梁分裂成不同的構件的這種可能性是不存在的。由于這個原因和缺乏準確的理論模型,所以我們把圬工拱橋理想化的特性作為一個系統(tǒng),包括互動效應,填充料,拱肩墻等,這又是另一個尚未克服的難點。最后,由于缺乏可靠的統(tǒng)計數(shù)據(jù)對材料性能的定義也成了一個問題,這個問題限制了基本概率的評估技術的使用。在靜載荷作用下圬工可以利用的數(shù)據(jù)特性很少。更戲劇性的是在循環(huán)載荷作用下實驗數(shù)據(jù)的極度匱乏。所以從砌體強度測量值估計可能比現(xiàn)有結構評估13,14要好,而這已被視為關鍵問題之一。然而,一些經驗證明基于可靠性的評估方法在砌體結構彎曲和壓縮1518時的能力評估中具有潛力。例如,在19中對按中國標準設計的典型的鋼筋灌漿混凝土砌體墻的結構的可靠性進行了評價。在圬工拱的特殊情況中,可以利用精確橋梁模型應用概率評估的情況很少。在文獻20中,可靠性分析和非線性模型的磚石拱橋提出使用隱式極限狀態(tài)函數(shù),這提出一種敏感性分析法。在某些情況下,當使用標準方法評估線性模型時,
下載積分: 10 賞幣
上傳時間:2024-03-16
頁數(shù): 29
大小: 0.44(MB)
子文件數(shù):
-
簡介:ENGINEERINGSTRUCTURES2720051715–1725WWWELSEVIERCOM/LOCATE/ENGSTRUCTTECHNOLOGYDEVELOPMENTSINSTRUCTURALHEALTHMONITORINGOFLARGESCALEBRIDGESJMKO?,YQNIDEPARTMENTOFCIVILANDSTRUCTURALENGINEERING,THEHONGKONGPOLYTECHNICUNIVERSITY,HUNGHOM,KOWLOON,HONGKONGAVAILABLEONLINE14JULY2005ABSTRACTTHESIGNIFICANCEOFIMPLEMENTINGLONGTERMSTRUCTURALHEALTHMONITORINGSYSTEMSFORLARGESCALEBRIDGES,INORDERTOSECURESTRUCTURALANDOPERATIONALSAFETYANDISSUEEARLYWARNINGSONDAMAGEORDETERIORATIONPRIORTOCOSTLYREPAIROREVENCATASTROPHICCOLLAPSE,HASBEENRECOGNIZEDBYBRIDGEADMINISTRATIVEAUTHORITIESDEVELOPINGALONGTERMMONITORINGSYSTEMFORALARGESCALEBRIDGEONETHATISREALLYABLETOPROVIDEINFORMATIONFOREVALUATINGSTRUCTURALINTEGRITY,DURABILITYANDRELIABILITYTHROUGHOUTTHEBRIDGELIFECYCLEANDENSURINGOPTIMALMAINTENANCEPLANNINGANDSAFEBRIDGEOPERATIONPOSESTECHNOLOGICALCHALLENGESATDIFFERENTLEVELS,FROMTHESELECTIONOFPROPERSENSORSTOTHEDESIGNOFASTRUCTURALHEALTHEVALUATIONSYSTEMTHISPAPEREXPLORESRECENTTECHNOLOGYDEVELOPMENTSINTHEFIELDOFSTRUCTURALHEALTHMONITORINGANDTHEIRAPPLICATIONTOLARGESCALEBRIDGEPROJECTSTHENEEDFORTECHNOLOGICALFUSIONFROMDIFFERENTDISCIPLINES,ANDFORASTRUCTURALHEALTHEVALUATIONPARADIGMTHATISREALLYABLETOHELPPRIORITIZEBRIDGEREHABILITATION,MAINTENANCEANDEMERGENCYREPAIR,ISHIGHLIGHTED?2005ELSEVIERLTDALLRIGHTSRESERVEDKEYWORDSLARGESCALEBRIDGESTRUCTURALHEALTHMONITORINGSHMINSTRUMENTATIONSYSTEMDAMAGEDETECTIONBRIDGEMAINTENANCE1INTRODUCTIONTHEDEVELOPMENTOFSTRUCTURALHEALTHMONITORINGTECHNOLOGYFORSURVEILLANCE,EVALUATIONANDASSESSMENTOFEXISTINGORNEWLYBUILTBRIDGESHASNOWATTAINEDSOMEDEGREEOFMATURITYONSTRUCTURELONGTERMMONITORINGSYSTEMSHAVEBEENIMPLEMENTEDONBRIDGESINEUROPE1–4,THEUNITEDSTATES5,6,CANADA7,8,JAPAN9,10,KOREA11,12,CHINA13–15ANDOTHERCOUNTRIES16–18BRIDGESTRUCTURALHEALTHMONITORINGSYSTEMSAREGENERALLYENVISAGEDTOIVALIDATEDESIGNASSUMPTIONSANDPARAMETERSWITHTHEPOTENTIALBENEFITOFIMPROVINGDESIGNSPECIFICATIONSANDGUIDELINESFORFUTURESIMILARSTRUCTURESIIDETECTANOMALIESINLOADINGANDRESPONSE,ANDPOSSIBLEDAMAGE/DETERIORATIONATANEARLYSTAGETOENSURESTRUCTURALANDOPERATIONALSAFETYIIIPROVIDEREALTIMEINFORMATIONFORSAFETYASSESSMENTIMMEDIATELYAFTERDISASTERSANDEXTREMEEVENTSIVPROVIDEEVIDENCEANDINSTRUCTIONFORPLANNINGANDPRIORITIZINGBRIDGE?CORRESPONDINGAUTHORTEL85227665037FAX85227661354EMAILADDRESSCEJMKOINETPOLYUEDUHKJMKO01410296/SEEFRONTMATTER?2005ELSEVIERLTDALLRIGHTSRESERVEDDOI101016/JENGSTRUCT200502021INSPECTION,REHABILITATION,MAINTENANCEANDREPAIRVMONITORREPAIRSANDRECONSTRUCTIONWITHTHEVIEWOFEVALUATINGTHEEFFECTIVENESSOFMAINTENANCE,RETROFITANDREPAIRWORKSANDVIOBTAINMASSIVEAMOUNTSOFINSITUDATAFORLEADINGEDGERESEARCHINBRIDGEENGINEERING,SUCHASWINDANDEARTHQUAKERESISTANTDESIGNS,NEWSTRUCTURALTYPESANDSMARTMATERIALAPPLICATIONSTHEDEVELOPMENTANDIMPLEMENTATIONOFASTRUCTURALHEALTHMONITORINGSYSTEMCAPABLEOFFULLYACHIEVINGTHEABOVEOBJECTIVESANDBENEFITSISSTILLACHALLENGEATPRESENT,ANDNEEDSWELLCOORDINATEDINTERDISCIPLINARYRESEARCHFORFULLADAPTATIONOFINNOVATIVETECHNOLOGIESDEVELOPEDINOTHERDISCIPLINESTOAPPLICATIONSINTHECIVILENGINEERINGCOMMUNITYACTUALLY,STRUCTURALHEALTHMONITORINGHASBEENASUBJECTOFMAJORINTERNATIONALRESEARCHINRECENTYEARS19–21THERESEARCHINTHISSUBJECTCOVERSSENSING,COMMUNICATION,SIGNALPROCESSING,DATAMANAGEMENT,SYSTEMIDENTIFICATION,INFORMATIONTECHNOLOGY,ETCITREQUIRESCOLLABORATIONBETWEENCIVIL,MECHANICAL,ELECTRICALANDCOMPUTERENGINEERINGAMONGOTHERSTHECURRENTCHALLENGESFORBRIDGESTRUCTURALHEALTHMONITORINGJMKO,YQNI/ENGINEERINGSTRUCTURES2720051715–17251717TABLE1MAJORBRIDGESINCHINAINSTRUMENTEDWITHLONGTERMMONITORINGSYSTEMSNOBRIDGENAMEBRIDGETYPELOCATIONMAINSPANMSENSORSINSTALLED1JIANGYINBRIDGEAFTERUPGRADE28SUSPENSIONJIANGSU13851,2,3,4,5,6,9,10,1321STNANJINGYANGTZERIVERBRIDGE29STEELTRUSSJIANGSU1601,2,3,4,5,7,1432NDNANJINGYANGTZERIVERBRIDGE30CABLESTAYEDJIANGSU6281,2,3,4,7,9,13,164RUNYANGSOUTHBRIDGE31SUSPENSIONJIANGSU14901,2,3,4,65RUNYANGNORTHBRIDGE31CABLESTAYEDJIANGSU4061,2,3,46SUTONGBRIDGE32CABLESTAYEDJIANGSU10881,2,3,4,5,6,7,8,9,10,11,16,187TSINGMABRIDGE15SUSPENSIONHONGKONG13771,2,3,4,5,6,7,12,188KAPSHUIMUNBRIDGE15CABLESTAYEDHONGKONG4301,2,3,4,5,6,7,12,189TINGKAUBRIDGE15CABLESTAYEDHONGKONG4751,2,3,4,5,6,7,12,1810SHENZHENWESTERNCORRIDOR15CABLESTAYEDHONGKONG2101,2,3,4,5,7,8,15,16,17,1811STONECUTTERSBRIDGE15CABLESTAYEDHONGKONG10181,2,3,4,5,6,7,8,9,10,11,15,16,17,1812TONGLINGYANGTZERIVERBRIDGE33CABLESTAYEDANHUI4321,2,4,11,1313WUHUBRIDGE34CABLESTAYEDANHUI3122,3,4,5,10,1214HUMENBRIDGE35SUSPENSIONGUANGDONG8883,6,11,1215ZHANJIANGBAYBRIDGE6CABLESTAYEDGUANGDONG4801,2,3,5,6,9,11,14,1616XUPUBRIDGE36CABLESTAYEDSHANGHAI5902,3,4,7,1217LUPUBRIDGE37ARCHSHANGHAI5502,3,4,1218DAFOSIBRIDGE38CABLESTAYEDCHONGQING4502,3,4,5,10,1219BINZHOUYELLOWRIVERBRIDGE14CABLESTAYEDSHANDONG3001,2,3,4,6,10204THQIANJIANGBRIDGE39ARCHZHEJIANG5801,2,3,4,9,13NOTE1ANEMOMETERS2TEMPERATURESENSORS3STRAINGAUGES4ACCELEROMETERS5DISPLACEMENTTRANSDUCERS6GLOBALPOSITIONINGSYSTEMS7WEIGHINMOTIONSYSTEMS8CORROSIONSENSORS9ELASTOMAGNETICSENSORS10OPTICFIBERSENSORS11TILTMETERS12LEVELSENSORS13TOTALSTATIONS14SEISMOMETERS15BAROMETERS16HYGROMETERS17PLUVIOMETERS18VIDEOCAMERASMONITORINGOFLARGESCALEBRIDGESFIG1ILLUSTRATESSUCHANAPPLICATIONWHEREFIBEROPTICSENSORSAREDEPLOYEDALONGTHEDECKLENGTHOFTHESUSPENSIONJIANGYINBRIDGEFORBOTHSTRAINANDTEMPERATUREMEASUREMENTTHEMOSTATTRACTIVEFEATUREOFFIBEROPTICSENSORSISTHEIRCAPABILITYOFDISTRIBUTEDSENSINGANDMEASUREMENTWHICHWILLRESULTINELABORATECONDITIONMONITORINGFORLARGESCALEBRIDGESTHEEXISTENTMAINOBSTACLETOWIDEACCEPTANCEOFFIBEROPTICSENSORSFORBRIDGEMONITORINGAPPLICATIONISTHELACKOFENGINEERINGDEMONSTRATIONOFTHEDURABILITYOFTHESENSORSINAHARSHENVIRONMENTANDLONGTERMPERFORMANCEOFTHEIRATTACHMENTTOCONSTRUCTIONMATERIALSANOTHERPROMISINGAPPLICATIONOFFIBEROPTICSENSORSFORCABLESUPPORTEDBRIDGESISTHEEMBEDMENTOFSENSORSINSIDETHEBRIDGECABLESFORBOTHTEMPERATUREANDSTRAINMEASUREMENTANINTERDISCIPLINARYRESEARCHTEAMINHONGKONGPOLYTECHNICUNIVERSITYHASDEVISEDSUCHAFIBEROPTICSENSINGSYSTEMFORTHECABLESTAYEDSUTONGBRIDGEINTHISDESIGNSHOWNINFIG2,SEVENOUTOFTHEWIRESCOMPOSINGTHECABLECROSSSECTIONHAVEBEENREPLACEDBYSTAINLESSSTEELTUBESFORTHEDEPLOYMENTOFFIBEROPTICSENSORSOPTICFIBERSINTERMSOFTHEBRILLOUINSCATTERINGSENSORSARELAID‘STRAINFREE’INSIDEEACHSTEELTUBEFORDISTRIBUTEDTEMPERATUREMEASUREMENTALONGTHECABLELENGTHTHETECHNOLOGYOFBRILLOUINOPTICALTIMEDOMAINREFLECTOMETRYBOTDRISUSED,BYWHICHALASERPULSEISLAUNCHEDINTOTHEOPTICFIBERTHATSERVESASTHESENSINGELEMENTANDTHETEMPERATUREMEASUREMENTISACHIEVEDBYCOMBININGTHESCATTERINGINFORMATIONWITHPROPAGATIONTIMEOFTHELASERPULSESALONGTHEFIBERITISNOTEDTHATSEVENGALVANIZEDWIRESHAVEBEENADDEDATTHEOUTERMOSTOFTHECABLECROSSSECTIONTOKEEPTHETOTALAREAOFTHEWIRESUNALTEREDMEANWHILE,FIBERBRAGGGRATINGFBGSENSORSAREEMBEDDEDINTHECABLEENDSFORSTRAINMEASUREMENTTHESTRAINOFTHECABLENEARITSANCHORAGESISMEASUREDWITHFBGARRAYSEPOXIEDONTOTHEOUTSIDESURFACEOFTHESTEELTUBES,ASSHOWNINFIG2THEFBGARRAYSCONSISTOFTHREEFBGSTRAINSENSORSSPACED2MAPARTTHEFBGSARESENSITIVETOBOTHSTRAINANDTEMPERATURETHETEMPERATUREOFTHEFBGSISOBTAINEDFROMTHEBOTDRSYSTEM,ANDTHEREFORETHESTRAINAPPLIEDTOTHEFBGSCANBEDETERMINEDBECAUSETHEFBGARRAYSAREINSTALLEDALONGTHESTEELTUBESWHICHAREUSEDTOACCOMMODATEBOTDRFORTEMPERATUREMEASUREMENT,EXTRASTEELTUBESANDWIREAREAREDUCTIONAREESCHEWED
下載積分: 10 賞幣
上傳時間:2024-03-13
頁數(shù): 11
大?。?2.66(MB)
子文件數(shù):
-
簡介:中文中文7150字,字,4400單詞,單詞,22萬英文字符萬英文字符出處出處KWASNIEWSKIL,LIH,WEKEZERJ,ETALFINITEELEMENTANALYSISOFVEHICLE–BRIDGEINTERACTIONJFINITEELEMENTSINANALYSISDESIGN,2016,4211950959車橋耦合作用的有限元分析LESLAWKWASNIEWSKI,HONGYILI,JERRYWEKEZER,JERZYMALACHOWSKI摘要本文介紹了美國佛羅里達州的一座公路橋梁在與重型卡車發(fā)生耦合作用時,對其動力特性采用有限元分析的結果。有限元車橋耦合作用的分析是利用商業(yè)程序LSDYNA和佛羅里達州立大學的超級計算機實現(xiàn)的。綜合考慮氣動、車輪的旋轉以及適當?shù)慕佑|算法,制定和實現(xiàn)了精細的卡車有限元三維懸掛系統(tǒng),對實際行車時的動態(tài)加載效果進行了非常逼真的模擬。并在同一座橋梁上進行了各種靜態(tài)、動態(tài)的現(xiàn)場力學試驗。所得到的實驗數(shù)據(jù)用于車橋有限元模型的驗證。根據(jù)大量實驗數(shù)據(jù)可以發(fā)現(xiàn)利用有限元模擬系統(tǒng)進行實驗分析是真實可靠的。實驗提交的文件體現(xiàn)出利用計算力學和LSDYNA程序對車橋耦合作用、動力影響因素以及橋梁極限載荷進行深入、詳細調查的顯著潛力。關鍵詞車橋耦合作用;影響因素;橋梁動態(tài);有限元分析;計算機模擬;LSDYNA11介紹非線性有限元(FE)方法現(xiàn)今常用來解決工程問題。像這樣的一個工程領域是公路設施的管理的有效方法,尤其在橋梁領域,包括動態(tài)負載的實際效應,承載能力,以及橋梁使用狀況等,這是作出管理決策和制定載重限制所需的至關重要的知識?,F(xiàn)在我們的高速公路上使用的車輛荷載日益加重,這可以引起橋梁顯著的動態(tài)效應。在橋梁設計規(guī)范里,附加動態(tài)荷載亦是影響橋梁動態(tài)的重要因素。影響因數(shù)IM,也被稱為動態(tài)荷載系數(shù),它被定義為一個動態(tài)增量比,即結構對動載的反應RD?RS與靜態(tài)響應系數(shù)的比值。其中RD是動態(tài)響應系數(shù),RS是靜態(tài)相應系數(shù)。關于這個課題人們做了大量的研究,包括實驗影響因素、分析方法和程序規(guī)范。例如NOWAK和KIM在兩座跨越HURONRIVER的大橋上進行了測試,以研究影響因素、分布因素和橋面裂縫的橫向發(fā)展。CHOWDHURY和RAY分別在一個連續(xù)梁橋單跨、鋼構橋、和單跨度鋼筋混凝土T型梁橋上進行了一系列的負載測試,以量化在汽車活載下橋梁的物理性能和結構變化。GREEN和CEBON也選擇了一座橫跨LOWEREARLEY的LODDEN河的雙車道公路橋進行試驗,以驗證他們提出的分析方法。當然,還有更多像這樣的實驗研究實例。這些試驗表明,根據(jù)橋梁和車輛的不同參數(shù),橋梁表現(xiàn)出廣泛的結構和動力響應以及由此產生的其他影響?,F(xiàn)場試驗始終是獲取橋梁對動載響應的相關信息的最可靠的來源,也是最終驗證有限元分析理論的唯一方法。不過,這種試驗費用很高并且從現(xiàn)場試驗獲取全面的數(shù)據(jù)存在困難,這便導致了人們把更多的興趣放在了理論分析及計算方法上。一個可靠的分析研究可以大幅減少試驗費用并可以幫助更快的做出新的設計改進和維修決策。橋梁動力響應的調查分析是在對它的幾何形狀,材料模型,邊界條件和載荷進行很大的簡化的基礎上進行的。在分析時,車輛和橋梁結構的耦合作用常常被簡化為一個橫跨過梁或板的精簡的大規(guī)模彈簧阻尼系統(tǒng),并將路面平整度考慮在內7–12。當前橋梁設計規(guī)范提出了一些估算動態(tài)影響的公式。但是這些公式過于簡單化并且在許多情況下都受到工程師的質疑。本試驗采用一個由準確的,動態(tài)的計算機程序所做的有限元分析,研究中跨(2030M長)公路橋梁對動態(tài)車輛荷載的反應情況。該文介紹了針對所選城市公路橋梁車橋有限元模型的開發(fā)所做的全面的研究工作、車橋耦合作用的計算力學研究
下載積分: 10 賞幣
上傳時間:2024-03-16
頁數(shù): 19
大小: 1(MB)
子文件數(shù):
-
簡介:7100漢字,漢字,5000單詞,單詞,26萬英文字符萬英文字符出處出處MORGENTHALG,SHAMR,WESTBENGINEERINGTHETOWERANDMAINSPANCONSTRUCTIONOFSTONECUTTERSBRIDGEJJOURNALOFBRIDGEENGINEERING,2010,152144152昂船洲大橋的主塔、主梁結構施工介紹昂船洲大橋的主塔、主梁結構施工介紹GUIDOMORGENTHALROBINSHAMANDBRIANWEST摘要摘要昂船洲大橋具有第一大雙箱梁上部結構,同時也是世界上第二長的斜拉橋,。它特有的一些的結構特點,使得橋梁施工成為一大挑戰(zhàn)。本文詳細介紹了此橋橋塔及上部結構的設計和施工工程。一個安全和有效的施工必須建立在施工方和監(jiān)控方之間的密切合作的基礎上。詳細模擬,分析施工過程中的每一個步驟,考慮其對施工階段及成橋狀態(tài)耐久性能的影響。同時廣泛的運用風洞實驗和數(shù)字分析的方法來檢驗風荷載對結構的影響,進而全面而細致的控制所有施工過程中產生的變形。本文介紹了其特殊的施工方法和相關的工程投入。概述了怎樣通過研究一個有效的施工步驟而保證整個橋梁施工過程結構的安全性和抗風性能,同時完美的控制了整個橋梁的變形。CE數(shù)據(jù)庫標題橋梁,斜拉橋,混凝土,結構,鋼材,幾何控制,主塔,香港文章關鍵詞文章關鍵詞斜拉橋,施工分析,混凝土結構,鋼結構,臨時工程,變形控制簡介簡介現(xiàn)已完工的昂船洲大橋的具有一些獨特的設計特點,主跨超過1000米成功打破了世界記錄成為第二大斜拉橋并且成為了香港代表性大跨徑橋梁之一。它作為西九龍鏈接到大嶼山機場的8號干線中一部分,跨越藍巴勒海峽將西九龍的昂船洲與青衣島連接起來,將進一步促進新界沙田的發(fā)展。昂船洲大橋,是一個具有1018米長的主跨和298米高的主塔的高等級的斜拉橋(圖一),橋塔為圓錐形獨柱式(圖二),主跨主梁為流線型分離式雙箱梁(圖三),梁通過橫隔梁的豎直鏈接而成為整體(圖四)。邊跨為單片混凝土結構,跨度約為70米。主跨伸延至邊跨約50M長的部分為鋼箱梁結構。錨固在主塔上端的828行平行鋼絞線(PWS)的纜索來支撐著整個橋面。前田日立橫河新昌聯(lián)營(合資公司)于2004年4月獲得橋梁建設合同。,合資公司獲得合同后任命茂盛為顧問,為整個建設保駕護航,因為茂盛公司在前期準備工作中給予合資公司許多幫助斜拉橋的主跨和主塔的施工一直都是一個難題。中國大陸制造的鋼結構必須要有嚴格的控制和監(jiān)督。在現(xiàn)場施工中需要創(chuàng)新的施工方案和先進的技術來解決出現(xiàn)的種種困難。在施工過程中JV公司和MWUNSELL公司進行了深入的交流,對整個施工過程進行了全面的分析,來嚴格保證每個施工階段和整體橋梁都具有足夠的持久性能和承受能力。制定了一個綜合的大型風洞實驗來改善橋梁的氣動性能進而保證橋梁在臺風的作用下得穩(wěn)定性能。本文詳細的介紹了施工過程和相關投入。主塔施工矮塔部分采用爬模系統(tǒng)來修建混凝土矮塔,在模具上特別設計建立一個精細的后張法預應力鋼筋系統(tǒng)來調節(jié)每一次爬模過程中橋塔的幾何形狀。這個系統(tǒng)自帶一個“鳥籠”式的施工平臺來方便固定鋼筋和模板,以及進行混凝土的澆灌,養(yǎng)護和板的幾何結構的調整和鋼板之間的相互聯(lián)接。每一個分部都由七八個小件組成,每一相鄰節(jié)段相互匹配,精密配合,保證在香港工地上能精確的施工。在橋面板施工時要不斷的進行調整以保證其正確的位置,只有當前三段的試驗拼裝順利時才能進行施工,在試驗中應該對節(jié)段的連結度,標高,尺寸及平整度進行檢查以保證符合標準,如果符合標準,則將預留的頂?shù)装宓陌宀牧希ňG色部分)切割,切記預留設計的焊接差距。經過匹配,相鄰的節(jié)段被螺栓臨時拼接在一起,用來保證施工時候的節(jié)段順序和廠房中一致。兩個18米長的鋼梁由一個橫向連接梁連接組成了一個基本的主跨段。其中一些不同長度的主梁和他的組件并沒有在廠房中焊接起來,是因為他們已經配有一個特俗的重型起吊程序每一個縱梁通過分割和標記,每一部分由兩個多輪運輸車分別運輸?shù)酱鎯^(qū)。隨后將從存儲區(qū)運輸?shù)揭粋€停泊在堤口便于運輸?shù)?,具有動力定位的駁船上,最后運輸?shù)较愀鄣氖┕がF(xiàn)場。鋼橋面鋪裝鋼橋面的鋪裝在混凝土背跨的完成后進行,背跨的施工工藝和相關的工程都被MORGENTHAL等詳細描述。2008B重吊系統(tǒng)昂船洲大橋的鋼橋面主跨超過主塔48米與背跨鏈接,88米長的鋼橋面坐落在橋塔的兩側,在橋塔的一部分已經搭建了一個重力提吊系統(tǒng)(圖9)并隨后被用來懸挑主跨建設的一個平臺。(MORGENTHAL2008A)在重型起吊系統(tǒng)完成后,第一塊鋼橋面被開始張拉的三套背索和兩套主索固定于主塔40米左右,,橋面板被橫側軸承和縱向液壓緩沖器固定在主塔的兩側。節(jié)段吊裝主跨段的架設是在主塔邊的初始跨段上架立起重龍門從駁船上懸吊新的部分。嚴格實施相關規(guī)定,確保橋梁建設時期,繁忙的藍巴勒海峽的航運能繼續(xù)無阻。駁船運用動態(tài)定位系統(tǒng)將住跨段運輸?shù)狡鸬跷恢谩T谄鸬踹^程中運用GPS定位系統(tǒng)取代錨來保證駁船的正確位置。起吊過程中盡可能的減少起吊周期,盡可能的多運用絞車來取代鋼絞線吊裝千斤頂。吊裝首先由DP駁船在四艘警戒艇的陪同下航行到起吊位置。吊裝工具下降到駁船上主梁段上的受力位置以下進行固結。兩架起重龍門吊安裝在主梁的兩端邊緣位置開始施力知道梁段提升至目標的位置。在這個時候應及時將梁段上的木楔子拆除,以防止因駁船運行和主梁懸臂之間的共振現(xiàn)象而產生反彈。運用絞車和滑輪系統(tǒng)將梁段以每40分鐘抬高80米的速度向懸臂端靠近。最后護衛(wèi)艇解除整個藍巴勒海峽上的交通禁令。梁段安裝因為雙箱梁的橫向剛度偏小,在懸臂末端安裝新梁段時需要特殊的方法。在施工過程中水平方向上巨大的垂直吊裝龍門吊(每個龍門吊約850噸)將會使主梁產生一個較大的繞度。在距離索面約50米之間的橋面將產生一個將近100毫米的繞度,這些繞度只能通過橫梁的抗彎剛度來約束。新梁段在吊裝過程中因為起吊設備作用點基本與重心重合所以基本不產生變形。兩個箱型截面的垂直拼裝方式和結果稍有不同。在梁段拼接的時候應該使架立的梁段稍低于架立梁段。為了克服這種情況,我們專門設計了一種橫向張拉設備用來減少新梁段產生的繞度。四個固定點的受力接近150噸,全部由下面的液壓千斤頂來提供。新的梁段在受力鋼板上運用固定螺栓的方法來實現(xiàn)連接段和轉折處的精確
下載積分: 10 賞幣
上傳時間:2024-03-16
頁數(shù): 6
大?。?0.03(MB)
子文件數(shù):
-
簡介:JOURNALOFBRIDGEENGINEERING/AUGUST1999/151SELFANCHOREDSUSPENSIONBRIDGESBYJOHNAOCHSENDORF,1STUDENTMEMBER,ASCE,ANDDAVIDPBILLINGTON,2FELLOW,ASCEABSTRACTTHISPAPER,SUMMARIZINGTHEBEGINNINGS,ANALYSIS,ANDFUTUREOFSELFANCHOREDSUSPENSIONBRIDGES,EXAMINESTHEDEVELOPMENTOFTHISUNIQUEBRIDGEFORM,ITSUSESOVERTHEPASTCENTURY,ANDITSADVANTAGESANDDISADVANTAGESTHEKONOHANABRIDGEINOSAKA,JAPAN,ILLUSTRATESTHISTYPEANDPROVIDESACASESTUDYTOCOMPARECONVENTIONALSUSPENSIONBRIDGETHEORYWITHTHERESULTSOFAFINITEELEMENTMODELTHEFINALPORTIONOFTHEPAPEREVALUATESTHEPOTENTIALFORSELFANCHOREDSUSPENSIONBRIDGEDESIGN,ANDPROVIDESRECOMMENDATIONSFORDESIGNENGINEERSTHEGOALHEREISTODESCRIBETHESTRUCTURALBEHAVIOROFSELFANCHOREDBRIDGESINGENERAL,ANDOFTHEKONOHANABRIDGEINPARTICULARFIG21928SEVENTHSTREETBRIDGEINPITTSBURGHFIG1ORIGINAL1915COLOGNEDEUTZBRIDGEINGERMANYPRADE1990INTRODUCTIONSELFANCHOREDSUSPENSIONBRIDGESDIFFERFROMCONVENTIONALSUSPENSIONBRIDGESBECAUSETHEYDONOTREQUIREMASSIVEENDANCHORAGESINSTEAD,THEMAINCABLESARESECUREDTOEACHENDOFTHEBRIDGEDECK,ORSTIFFENINGGIRDER,WHICHCARRIESTHEHORIZONTALCOMPONENTOFCABLETENSIONTHEREFORE,THEENDSUPPORTSRESISTONLYTHEVERTICALCOMPONENTOFTENSION,ANADVANTAGEWHERETHESITECANNOTEASILYACCOMMODATEEXTERNALANCHORAGESBECAUSETHESTIFFENINGGIRDERSUPPORTSTHECABLETENSION,THEGIRDERMUSTBEPLACEDBEFORETHEMAINCABLECANBEERECTEDTHISCONSTRUCTIONSEQUENCE,THEOPPOSITEOFTHATOFACONVENTIONALSUSPENSIONBRIDGE,LIMITSTHESELFANCHOREDFORMTOMODERATESPANSALSOUNLIKETHECONVENTIONALSUSPENSIONFORM,THESELFANCHOREDBRIDGEANALYSISMUSTINCLUDETHEINFLUENCEOFTHELARGEAXIALFORCEINTHEDECKWITHTHESEISSUESINMIND,THISPAPERWILLDISCUSSTHEHISTORICALDEVELOPMENT,STRUCTURALANALYSIS,ANDPOTENTIALAPPLICATIONSOFTHISBRIDGEFORM,ANDWILLCONCLUDEWITHSOMEREFLECTIONSONRECENTSELFANCHOREDSUSPENSIONBRIDGESHISTORICALDEVELOPMENTINTHESECONDHALFOFTHE19THCENTURY,AUSTRIANENGINEERJOSEFLANGERANDAMERICANENGINEERCHARLESBENDERINDEPENDENTLYCONCEIVEDOFTHESELFANCHOREDSUSPENSIONBRIDGEMULLINS1936ALANGERFIRSTWROTEOFHISIDEAIN1859,ANDBENDERSTAKEDHISCLAIMWITHAPATENTISSUEDIN1867‘‘PATENT’’1867NEITHERDESIGNERUSEDCONTINUOUSCABLESINSTEAD,THEYANCHOREDTHEMAINCABLESTOTHEGIRDERATTHEMIDSPANASWELLASATEACHENDOFTHEBRIDGEIN1870LANGERBUILTASMALLSELFANCHOREDBRIDGE,INPOLAND,WHICHCARRIEDTRAINTRAFFIC,WHILEBENDERAPPARENTLYNEVERCONSTRUCTEDASELFANCHOREDBRIDGEALTHOUGHTHESEENGINEERSDIDNOTDIRECTLYINFLUENCEFUTUREDESIGNS,THESELFANCHOREDSUSPENSIONBRIDGEFORMBECAMECOMMONINGERMANYINTHEBEGINNINGOFTHE20THCENTURYGERMANENGINEERSBUILTTHEFIRSTLARGESCALE,SELFANCHOREDSUSPENSIONBRIDGEOVERTHERHINERIVERATCOLOGNE,GERMANY,IN1915MULLINS1936BFIG1THISCOLOGNEDEUTZBRIDGEHADAMAINSPANOF185MANDUTILIZEDTEMPORARYWOODENSCAFFOLDINGTOSUPPORTTHESTEELGIRDERSUNTILTHESUSPENSIONCABLESWEREINPLACE‘‘LENOUVEAU’’1920ANARTCOMMISSIONSELECTEDTHESUSPENSIONFORMFORAESTHETICREASONS,ANDENGINEERSOPTEDTOSELFANCHORTHESUSPENSIONCABLESFORFEAR1GRADSTUDENT,DEPTOFCIVENGRGANDOPERATIONSRES,PRINCETONUNIV,PRINCETON,NJ085442GORDONYSWUPROFESSOR,DEPTOFCIVENGRGANDOPERATIONSRES,PRINCETONUNIV,PRINCETON,NJNOTEDISCUSSIONOPENUNTILJANUARY1,2000TOEXTENDTHECLOSINGDATEONEMONTH,AWRITTENREQUESTMUSTBEFILEDWITHTHEASCEMANAGEROFJOURNALSTHEMANUSCRIPTFORTHISPAPERWASSUBMITTEDFORREVIEWANDPOSSIBLEPUBLICATIONONMARCH23,1998THISPAPERISPARTOFTHEJOURNALOFBRIDGEENGINEERING,VOL4,NO3,AUGUST,1999?ASCE,ISSN10840702/99/00030151–0156/800?50PERPAGEPAPERNO17921THATTHESOILCONDITIONSWOULDNOTBEADEQUATEFOREXTERNALANCHORAGESLEONHARDT1984ACHAINSCOMPOSEDOFEYEBARSPROVIDEDFOREASEOFANCHORINGTOTHESTIFFENINGGIRDERENGINEERSAROUNDTHEWORLDRECOGNIZEDTHECOLOGNEDEUTZBRIDGEASANINNOVATIVEFORM,ANDFOR15YEARSAFTERITSCOMPLETIONITINFLUENCEDTHEDESIGNOFOTHERBRIDGESSPECIFICALLY,THETHREEALLEGHENYRIVERCROSSINGSINPITTSBURGH,PENNSYLVANIA,ANDTHESMALLERKIYOSUBRIDGEINTOKYO,JAPAN,CLOSELYREPLICATEDTHEAPPEARANCEOFTHECOLOGNEDEUTZBRIDGETAJIMAANDSUGIYAMA1991ITWASDESTROYEDIN1945,ANDASTEELBOXGIRDERBRIDGEEXISTSTODAYONTHEORIGINALABUTMENTSPRADE1990THETHREENEARLYIDENTICALBRIDGESCONSTRUCTEDOVERTHEALLEGHENYRIVERINPITTSBURGHFROM1925TO1928REPRESENTTHEMOSTIMPORTANTAMERICANAPPLICATIONOFTHESELFANCHOREDFORMINEVALUATINGTHEPROPOSEDSIXTH,SEVENTH,ANDNINTHSTREETCROSSINGS,THECITYARTCOMMISSIONOFPITTSBURGHREQUESTEDASUSPENSIONFORMFORAESTHETICREASONSINSPIREDBYJBRIDGEENG19994151156DOWNLOADEDFROMASCELIBRARYORGBYTONGJIUNIVERSITYON07/22/13COPYRIGHTASCEFORPERSONALUSEONLYALLRIGHTSRESERVEDJOURNALOFBRIDGEENGINEERING/AUGUST1999/153TABLE1KONOHANABRIDGEDIMENSIONSDIMENSION1VALUE2MAINSPAN300M984FTTOTALSUSPENDEDSPAN540M1,7712FTSAGSPAN16DEPTHOFGIRDER317M104FTWIDTHOFGIRDER265M869FTGIRDERDEPTHMAINSPAN195SELFWEIGHT087TONS/M2170PSFTRAFFICCAPACITY4LANESFIG5ELEVATIONDIAGRAMOFKONOHANABRIDGETABLE2MAJORSELFANCHOREDSUSPENSIONBRIDGESNAMELOCATION1YEAR2MAINSPANM3SIDESPANSM4SAGSPAN5COLOGNEDEUTZGERMANY19151845923186SEVENTHSTREETPITTSBURGH19261348675181KIYOSUJAPAN1928915458171COLOGNEMU¨LHEIMGERMANY19293150910191KONOHANAJAPAN199030001200160YONGJONGKOREA199930001250150BRIDGEASLENDERAPPEARANCETABLE1SUMMARIZESTHEGENERALDIMENSIONSOFTHEKONOHANABRIDGEFIG5GIVESANELEVATIONDIAGRAMTHESUCCESSOFTHEKONOHANABRIDGEISDUETOTHREEMAINASPECTSOFITSDESIGN1THEMETHODOFERECTION2THEUSEOFINCLINEDHANGERSAND3THEUSEOFASTEELBOXGIRDERFIRST,ANEFFICIENTERECTIONSCHEMERESULTEDFROMPREFABRICATINGTHEGIRDERINFIVELARGESECTIONS,WEIGHINGASMUCHAS2,700TONSEACHFLOATINGCRANESLIFTEDTHESESECTIONSINTOPLACE,ANDTWOTEMPORARYSUPPORTSWITHINTHEMAINSPANSUPPORTEDTHEGIRDERSECTIONSDURINGERECTIONKAMEIETAL1992AFTERCONSTRUCTINGTHETWOTOWERS,THEBUILDERSINSTALLEDTHEMAINCABLEUSINGPREFABRICATEDPARALLELWIRESTRANDS,THUSAVOIDINGTHETIMECONSUMINGPROCESSOFCABLESPINNINGTHESECONDSUCCESSFULDESIGNASPECTWERETHEINCLINEDSUSPENDERS,PRETENSIONEDTOAVOIDSLACKENINGUNDERANYLOADINGCONDITIONTHEPRETENSIONINGALSOJACKEDUPTHEMAINGIRDERTOENSUREACCURATECONTROLDURINGERECTIONTHIRD,THEINVERTEDTRAPEZOIDALBOXGIRDER,DESIGNEDWITHSUFFICIENTMOMENTCAPACITYTOSPAN120MBETWEENTHETEMPORARYSUPPORTS,MADETHEERECTIONSCHEMEPOSSIBLEANDMINIMIZEDTHENECESSARYFALSEWORKINADDITION,THECLOSEDBOXSHAPEPROVIDESEXCELLENTAERODYNAMICPERFORMANCEANDHIGHTORSIONALRIGIDITY,CRITICALREQUIREMENTSFORABRIDGESUPPORTEDBYONLYONEMAINCABLELIKETHELANDMARKCOLOGNEDEUTZBRIDGEOF1915,THEKONOHANABRIDGEHASINFLUENCEDOTHERBRIDGEDESIGNSMOSTNOTABLY,THEYONGJONGBRIDGE,WHICHWILLPROVIDEACRITICALLINKWITHTHENEWAIRPORTINSEOUL,SOUTHKOREA,WHENCOMPLETEDIN2,000,ISVERYSIMILARTOTHEKONOHANABRIDGEINITSOVERALLFORMANDDIMENSIONSITS300MMAINSPANANDAFRAMETOWERSARECLEARLYDERIVEDFROMTHEKONOHANABRIDGE,BUTITHASTHREESIGNIFICANTDIFFERENCESFIRST,INORDERTODECREASETHEAXIALGIRDERFORCEDUETOSELFANCHORING,THEMAINSPANCABLESAGISINCREASEDTO60M,20GREATERTHANTHEKONOHANABRIDGESECOND,THEYONGJONGBRIDGEUTILIZESTWOMAINCABLES,WHICHCURVETHREEDIMENSIONALLYFROMTHETOPOFEACHTOWERTOTHEOUTSIDEOFTHEGIRDERATMIDSPAN,ANDPROVIDEINCREASEDLATERALSTABILITYKWONETAL1995THIRD,THESTIFFENINGGIRDERUTILIZESA7MDEEPTRUSS,WHICHCARRIESRAILTRAFFICONTHELOWERLEVEL,ANDEASESCONSTRUCTIONBYSPANNINGLONGDISTANCESWITHOUTTHESUPPORTOFTHEMAINCABLEGILANDCHO1998TABLE2PRESENTSASUMMARYOFTHEDEVELOPMENTOFSELFANCHOREDSUSPENSIONBRIDGESBECAUSETHEFORCEINTHESTIFFENINGGIRDERISEQUALTOTHEHORIZONTALCOMPONENTOFMAINCABLETENSION,RECENTDESIGNSHAVEINCREASEDTHESAGOFTHEMAINCABLEINORDERTOREDUCETHEVALUEOFAXIALCOMPRESSIONINTHESTIFFENINGGIRDERINGENERAL,THESAGSPANRATIOSOFSELFANCHOREDBRIDGESAREAROUND16CONSIDERABLYGREATERTHANTHESAGSPANRATIOSOFEXTERNALLYANCHOREDSUSPENSIONBRIDGES,WHICHTYPICALLYAREAROUND110ANALYSISOFSELFANCHOREDSUSPENSIONBRIDGESTWOTHEORIESHAVEDOMINATEDSUSPENSIONBRIDGEANALYSISOVERTHELASTCENTURYTHEELASTICTHEORYANDTHEDEFLECTIONTHEORYTHEELASTICTHEORYDIDNOTACCOUNTFORTHESTIFFENINGEFFECTOFTHEMAINCABLEUNDERTENSION,ANDTHUSGAVEHIGHERMOMENTSINTHESTIFFENINGGIRDERTHEDEFLECTIONTHEORYOREXACTTHEORYACCOUNTEDFORTHESECONDORDEREFFECTSOFCABLESTIFFNESSANDCORRECTLYREDUCEDTHEMOMENTCARRIEDBYTHESTIFFENINGGIRDERMELAN1913BYTHE1930S,SUSPENSIONBRIDGEDESIGNERSWEREAWAREOFTHEECONOMYOFFEREDBYTHEDEFLECTIONTHEORY,ANDREGARDEDTHEELASTICTHEORYTOBEOBSOLETESTEINMAN1929THEELASTICTHEORYGIVESTHEMOMENTATANYPOINTINTHEDECKGIRDERASMM??HY1WHEREM?LIVELOADMOMENTOFUNSUSPENDEDGIRDERHHORIZONTALCOMPONENTOFCABLETENSIONPRODUCEDBYLIVELOADANDYORDINATEOFMAINSPANCABLECURVEATLOCATIONOFDESIREDMOMENTTHUS,THELIVELOADMOMENTPRODUCEDINTHEGIRDERISREDUCEDBYTHEEFFECTOFTHEHORIZONTALCOMPONENTOFLIVELOADTENSIONINTHECABLEHOWEVER,THEELASTICTHEORYDOESNOTACCOUNTFORTHEADDITIONALRELIEVINGMOMENTPROVIDEDBYTHEHORIZONTALCOMPONENTOFTOTALCABLETENSIONDEADPLUSLIVELOADWHENTHEBRIDGEDEFLECTSADISTANCEV,UNDERTHELIVELOADTHEDEFLECTIONTHEORYACCOUNTSFORTHISCABLESTIFFNESSANDREDUCESTHEMOMENTINTHEGIRDERBYANADDITIONALAMOUNTH?HVTHUSTHEDEFLECTIONTHEORYISANEXTENSIONOFTHEELASTICTHEORYANDISWRITTENMM??HY?H?HV2WHEREH?HHORIZONTALCOMPONENTOFTENSIONINCABLEDUETODEADANDLIVELOADBYACCOUNTINGFORCABLESTIFFNESS,THEDEFLECTIONTHEORYREDUCESTHEREQUIREDGIRDERSTIFFNESSANDPROVIDESCONSIDERABLEECONOMYOVERTHEELASTICTHEORYSTEINMAN1929ACCOUNTINGFORTHELARGEAXIALFORCEINTHEDECKOFSELFANCHOREDSUSPENSIONBRIDGESREQUIRESANADAPTATIONINTRADITIONALSUSPENSIONBRIDGEANALYSISBECAUSETHEDECKCARRIESTHEENTIREHORIZONTALFORCECOMPONENTOFTHECABLE,THEAXIALFORCEINTHEDECKISEQUALTOTHEQUANTITYH?HUNDERADOWNWARDDEFLECTIONV,THEAXIALFORCEWILLPRODUCEANADDITIONALPOSITIVEMOMENTH?HVIFTHEBRIDGEDECKISCONSIDEREDTOBEINITIALLYHORIZONTALJBRIDGEENG19994151156DOWNLOADEDFROMASCELIBRARYORGBYTONGJIUNIVERSITYON07/22/13COPYRIGHTASCEFORPERSONALUSEONLYALLRIGHTSRESERVED
下載積分: 10 賞幣
上傳時間:2024-03-13
頁數(shù): 6
大?。?0.51(MB)
子文件數(shù):
-
簡介:1中文中文9500字,字,7400單詞,單詞,35萬英文字符萬英文字符出處出處ZOUPXW,SHANGSTIMEDEPENDENTBEHAVIOUROFCONCRETEBEAMSPRETENSIONEDBYCARBONFIBREREINFORCEDPOLYMERSCFRPTENDONSJCONSTRUCTIONBUILDINGMATERIALS,2007,214777788碳纖維增強復合材料CFRP筋預應力混凝土梁時間依存性的特性PATRICKXWZOU,SHOUPINGSHANG摘要由于其非腐蝕性和高的抗拉強度性能,碳纖維增強聚合物(CFRP)引起了研究者們的興趣,展開全球性的研究CFRP作為混凝土結構預應力筋或增強物的可行性和有效性。然而直到現(xiàn)在,這些研究主要以實驗測試的形式存在,缺乏的理論體系的提供。本文首先提出了一種分析方法來預測CFRP筋預應力混凝土梁在持續(xù)工作條件下,隨時間變化的特性,包括混凝土應變、曲率和撓度以及預應力損失。本文提出了三個說明性的例子來介紹如何使用這種分析方法來計算隨時間變化的混凝土應變,曲率和預應力CFRP筋混凝土梁的撓度。結論是,所提出的理論體系適應于CFRP筋預應力混凝土梁的隨時間變化的特性分析,因此CFRP可以有效地用作預應力筋混凝土梁。關鍵詞碳纖維增強的聚合物;筋;時間依存性的特性;混凝土梁;撓度;應變3??2橫截面分析法在荷載條件下,預應力混凝土梁可能會出現(xiàn)兩種情況開裂或保持完好。本節(jié)討論的橫截面分析的方法,包括未開裂截面和開裂截面。21分析方法測定首先計算導致彎拉開裂所需的開裂彎矩MCR,這是用于選定未開裂截面分析或完全開裂截面分析。(第一次發(fā)生開裂時的彎矩被稱為開裂彎矩。)如果梁橫截面工作時的彎矩MS小于開裂彎矩MCR,選用無裂縫截面分析,其他時候必須使用完全開裂截面分析。開裂彎矩MCR的計算使用下面的公式?MCR?PEE??FR???ZB?AG??1?其中PE是有效預應力;E是預應力筋總截面偏心距;FR是混凝土抗彎強度;AG截面總面積;ZB是截面模量。22未開裂預應力截面短期分析未開裂橫截面短期分析是通過把黏鋼加固和筋轉換成混凝土等效面積,執(zhí)行很簡單,即在相等的混凝土截面進行彈性分析。換算截面如圖1所示。圖1實際和轉換的無裂縫截面毛條纖維的換算截面面積A、一階面積B和二階面積I分別表示為如下方程A?BD?NP?1AP?NS1?1AS1?NS2?1AS2?2?PE
下載積分: 10 賞幣
上傳時間:2024-03-12
頁數(shù): 27
大?。?0.46(MB)
子文件數(shù):
-
簡介:RELIABILITYBASEDASSESSMENTOFMASONRYARCHBRIDGESJOANRCASAS?SCHOOLOFCIVILENGINEERING,UNIVERSITATPOLITèCNICADECATALUNYAUPC,C/JORDIGIRONA13,08034BARCELONA,SPAINARTICLEINFOARTICLEHISTORYRECEIVED17MAY2010RECEIVEDINREVISEDFORM30SEPTEMBER2010ACCEPTED23OCTOBER2010AVAILABLEONLINEXXXXKEYWORDSMASONRYARCHRELIABILITYFATIGUESERVICEABILITYABSTRACTTHEPAPERPRESENTSAMETHODOLOGYFORTHEPROBABILISTICASSESSMENTOFMASONRYARCHESATTHESERVICEABILITYANDULTIMATELIMITSTATESFIRST,ITEXPLAINSTHEDEFINITIONOFTHEDIFFERENTFAILUREMODESANDCORRESPONDINGLIMITSTATEFUNCTIONSTHATMAYOCCURDEPENDINGONTHETYPEOFMASONRYCONSTRUCTIONSINGLERINGANDMULTIRINGTHEMOSTREPORTEDMODESOFFAILUREARETHEFOURHINGEMECHANISM,THERINGSEPARATIONINMULTIRINGARCHESANDTHESLIPPAGEATTHEFOUNDATIONSBECAUSEOFTHELACKOFRELIABLEMATERIALDATAINTHESTATISTICSENSEORAVAILABLERESPONSEMODELS,ONLYTHOSEMOREPRONETOBEANALYZEDUSINGRELIABILITYBASEDMETHODSARESHOWNINTHISPAPERFOURHINGEMECHANISMANDRINGSEPARATIONTHEPOSSIBILITYOFFATIGUEFAILUREOFMASONRYARCHBRIDGESUNDERSERVICELOADSANDTHEPROPOSALOFRELIABILITYBASEDASSESSMENTMETHODSATTHEULTIMATELEVELOFTHEFOURHINGEMECHANISMAREALSOANALYZEDFINALLY,THEPROPOSEDMETHODOLOGYISAPPLIEDTOANEXISTINGBRIDGE?2010ELSEVIERLTDALLRIGHTSRESERVED1INTRODUCTIONOVERTHEPAST10YEARSTHEREHASBEENANEXTENSIVEPROGRAMMEOFRESEARCHWHICHCONSIDEREDSOMEASPECTSOFMASONRYARCHBEHAVIOURANUMBEROFSMALLANDLARGESCALETESTSHAVEBEENCARRIEDOUTONMASONRYARCHES,MOSTOFTHEMHAVEBEENUNDERSTATICMONOTONICLOADINGANDCONSIDEREDMAINLYTHEARCHRINGITSELFHOWEVER,THEREHASBEENVERYLITTLEWORKDONEONINVESTIGATINGTHELONGTERMEFFECTOFTRAFFICCYCLICLOADINGANDTHEEFFECTOFDETERIORATEDMASONRYONTHEFATIGUELIFEOFTHEBRIDGESEVERALSEMIEMPIRICALANDNUMERICALMETHODSEXISTTODETERMINETHELOADCARRYINGCAPACITYOFMASONRYARCHESMEXEMETHOD,MAXIMUMSTRESSANALYSIS,LIMITANALYSISMECHANISMMETHODS1–3,SOLIDMECHANICSMETHODSCASTIGLIANO’SNONLINEARANALYSIS,FINITEELEMENTANALYSIS,DISCRETEELEMENTANALYSISMANYCOMPUTERBASEDAPPLICATIONSOFTHESEMETHODSALSOEXISTARCHIEM,RING,DIANARECENTLY,THEPOSSIBILITYOFFATIGUEFAILUREUNDERCYCLICLOADINGATNORMALSERVICELEVELOFLOADING,MUCHLOWERTHANTHEULTIMATELOAD4HASSUGGESTEDANEWAPPROACHTOTHEASSESSMENTOFMASONRYARCHESBASEDUPONTHELONGTERMPERFORMANCEOFMASONRYSUBJECTEDTOCYCLICLOADING5,6AVAILABLEASSESSMENTMETHODSOFMASONRYARCHESAREDETERMINISTICINNATURETHEYCANPREDICTULTIMATECAPACITYPROVIDEDTHATALLVARIABLESINVOLVEDINTHERESPONSEAREASSUMEDASDETERMINISTICVALUES,WHATISNOTREALLYTHECASEDUETOUNCERTAINTIESINVOLVEDINGEOMETRY,MATERIALSANDLOADSRELIABILITYBASEDASSESSMENTOFSTRUCTURESANDPARTICULARLYBRIDGESHASBEENSUCCESSFULLYIMPLEMENTEDANDPERFORMEDINRECENTYEARSTHESEMETHODSASSUMETHEINTRINSICUNCERTAINTYOFTHEVARIABLESINVOLVEDMOSTOFTHEEXPERIENCESHAVEBEENDONEINTHEFIELDOFBRIDGESEITHERFROMSTRUCTURALCONCRETEREINFORCEDANDPRESTRESSEDORSTEELSEVERALEXPERIENCESHAVESHOWNTHELARGEAMOUNTOFMONEYTHATCANBESAVEDBYANEFFICIENTANDACCURATEASSESSMENTBASEDONAPROBABILISTICAPPROACH7–12HOWEVERTHEAPPLICATIONTOMASONRYBRIDGESHASBEENALMOSTNEGLIGIBLEONEREASONISTHEDIFFICULTYTODEFINERELIABLEFAILURECRITERIAFORTHISTYPEOFSTRUCTURESANOTHERREASONISTHELACKOFSTATISTICALDATAONMATERIALPROPERTIESOFMASONRYANDFILLINGMATERIALTHEEXPERIMENTALTESTSSHOWTHATNORMALLYTHEFAILUREOFANARCHISOFAGLOBALNATUREMORETHANDUETOTHEFAILUREOFABRIDGECOMPONENTINMOSTCASES,EVENTHEDIVISIONOFTHEBRIDGEINDIFFERENTCOMPONENTSISALMOSTIMPOSSIBLEFORTHISREASON,ALSOTHELACKOFACCURATETHEORETICALMODELSFORTHEIDEALIZATIONOFTHEBEHAVIOUROFTHEMASONRYARCHBRIDGEASASYSTEM,INCLUDINGTHEINTERACTIONEFFECTSWITHTHEFILLINGMATERIAL,SPANDRELWALLS,ETC,HASBEENANOTHERDIFFICULTYNOTYETOVERCOMELAST,BUTNOTLEAST,THEABSENCEOFRELIABLEDATAONTHESTATISTICALDEFINITIONOFTHEMATERIALPROPERTIESHASBEENANOTHERISSUETHATHASLIMITEDTHEUSEOFPROBABILITYBASEDASSESSMENTTECHNIQUESVERYFEWDATAISAVAILABLEFORTHEBEHAVIOUROFTHEMASONRYUNDERSTATICLOADSTHELACKOFEXPERIMENTALDATAISEVENMOREDRAMATICINTHECASEOFCYCLICLOADINGESTIMATIONOFMASONRYSTRENGTHFROMMEASUREMENTSMAYTHENBEONEOFKEYISSUESOFTHEASSESSMENTOFEXISTINGSTRUCTURES13,14HOWEVER,SOMEEXPERIENCESHAVESHOWNTHEPOTENTIALITYOFTHEUSEOFRELIABILITYBASEDASSESSMENTINTHECAPACITYASSESSMENTOFMASONRYSTRUCTURESINBENDINGANDCOMPRESSION15–18ASAN09500618/SEEFRONTMATTER?2010ELSEVIERLTDALLRIGHTSRESERVEDDOI101016/JCONBUILDMAT201010011?TEL34934016513FAX34934054135EMAILADDRESSJOANRAMONCASASUPCEDUCONSTRUCTIONANDBUILDINGMATERIALSXXX2010XXX–XXXCONTENTSLISTSAVAILABLEATSCIENCEDIRECTCONSTRUCTIONANDBUILDINGMATERIALSJOURNALHOMEPAGEWWWELSEVIERCOM/LOCATE/CONBUILDMATPLEASECITETHISARTICLEINPRESSASCASASJRRELIABILITYBASEDASSESSMENTOFMASONRYARCHBRIDGESCONSTRBUILDMATER2010,DOI101016/JCONBUILDMAT201010011THEFAILUREMECHANISMBYRINGSEPARATIONNORMALLYAPPEARSUNDERCYCLICLOADINGCONDITIONS,ALTHOUGHALSOAMONOTONICEXTREMELOADMAYCAUSETHESEPARATIONINTHECASEOFSTATICLOADING,RINGSEPARATIONCANOCCURBETWEENTHE14POINTANDTHENEARESTABUTMENTANDTHEFAILUREISCONSIDEREDASANULTIMATELIMITSTATEFORCYCLICLOADING,THESEPARATIONOCCURSBETWEENTHE14AND34POINTINTHECASEOFTHERINGSEPARATIONUNDERCYCLICLOADING,THEFAILURESHOULDBECONSIDEREDAFATIGUELIMITSTATE,OR,AGAIN,ASAPERMISSIBLELIMITSTATE4,63LIMITSTATEFUNCTIONSDEPENDINGONTHECRITERIAADOPTEDTODEFINETHEFAILUREOFTHEBRIDGE,DIFFERENTLIMITSTATEFUNCTIONSANDDIFFERENTLEVELSOFASSESSMENTCANBEFORMULATEDACCORDINGTOTHEFAILUREMECHANISMSDEFINEDINSECTION2,THEPOSSIBLELEVELSOFASSESSMENTANDCORRESPONDINGLIMITSTATEFUNCTIONSAREDESCRIBEDBELOWDESPITEASIGNIFICANTUNCERTAINTYEXISTSONTHEABILITYOFTHEUSEDMODELSTOCHARACTERIZETHEBEHAVIOUROFMASONRYSTRUCTURES,EVENFORTHEMOSTADVANCEDONES,MODELUNCERTAINTYHASNOTBEENCONSIDEREDEXPLICITLYINTHEDEFINITIONOFTHELIMITSTATEFUNCTIONSTHEMEANREASONISTHAT,ATTHEPRESENTMOMENT,NOTSUFFICIENTEXPERIMENTALDATAISAVAILABLETOSTATISTICALLYDEFINESUCHUNCERTAINTYITISCLEARTHATTHISSHOULDBECORRECTEDASMORECOMPARISONSBETWEENEXPERIMENTALANDNUMERICALRESULTSWILLBECOMEAVAILABLENEGLECTINGTHEMODELUNCERTAINTYINTHELIMITSTATEFUNCTIONCANBECOMPENSATEDBYREQUIRINGAHIGHERTARGETRELIABILITYLEVELINTHESTRUCTURETHANINTHECASEWHEREMODELUNCERTAINTYISCONSIDEREDATLEAST,THREEASSESSMENTLEVELSEXIST,WITHINCREASINGLEVELOFCOMPLEXITYANDACCURACYDEPENDINGONTHEFAILURECRITERIAANDANALYTICALMODELUSEDTHEYARESUMMARIZEDINTHEDIAGRAMINFIG4JOINTLYWITHTHEFAILUREMODESANDLIMITSTATESCONSIDERED,ANDFULLYDESCRIBEDBELOW31FIRSTLEVELOFASSESSMENTLOCALFAILURE311MONOTONICLOADINGTHISFAILUREOCCURSWHENANEXTREMELOADCAUSESEXCESSIVEBENDINGMOMENTS/SHEARFORCESCOMBINEDWITHIMPORTANTAXIALLOADSRESULTINGINTHEFAILUREEITHERBECAUSETENSIONSTRESSAPPEARSOREXCESSIVECOMPRESSIONINTHEMATERIALPROVOKESCRUSHINGOFTHEMASONRYTHEFAILURECRITERIACANBEBASEDONTHEULTIMATELIMITSTATEULSFORMULATIONTHELOWESTCAPACITYLEVELWILLBEOBTAINEDCONSIDERINGTHEFAILUREOFTHEBRIDGEWHENANYFIBREATANYCROSSSECTIONISINTENSIONORITREACHESTHEMAXIMUMALLOWABLECOMPRESSIONOFTHEMATERIALTHECORRESPONDINGLSFUNCTIONISG?RMING?FC?RMAXD1TWHERERMINANDRMAXARETHELOWESTANDHIGHESTSTRESSATANYPOINTOFTHEBRIDGEANDFCISTHECOMPRESSIVESTRENGTHOFMASONRYTHEVALUEOFTHEINTERNALFORCESBENDINGMOMENT,NORMALFORCEANDTHEDISTRIBUTIONOFSTRESSESINTHECROSSSECTIONAREDERIVEDASSUMINGALINEARBEHAVIOUROFTHESTRUCTUREANDTHEMATERIALOFCOURSE,THISISANEXTREMELYRESTRICTIVEANDOVERCONSERVATIVEFAILURECRITERIONHOWEVER,IFTHEBRIDGEPASSESTHISLEVELOFASSESSMENT,THATREQUIRESVERYSIMPLEMODELLINGTOOLS,ITMAYBEASSUREDTHATTHEBRIDGEISINVERYGOODSHAPE312CYCLICLOADINGFATIGUETHEFEWAVAILABLEHIGHCYCLEFATIGUETESTSEITHERINSMALLSPECIMENS23ORFULLLABORATORYMODELS4HAVESHOWNTHATTHEFATIGUESTRENGTHOFBRICKMASONRYSUBJECTTOCOMPRESSIVEBENDINGSTATEDEPENDSUPONTHEINDUCEDSTRESSRANGE,THEMEANORMAXIMUMINDUCEDSTRESSANDTHEQUASISTATICCOMPRESSIVESTRENGTHOFTHEMASONRYUNDERSIMILARLOADINGCONDITIONSCONSIDERINGTHATASETOFEXPERIMENTALPOINTSINTHES–NPLANEISPROVIDED,THENTHEFATIGUECAPACITYFROMAPROBABILISTICPOINTOFVIEWCANBEANALYSEDINASIMILARWAYASINTHECASEOFCONCRETEORSTEEL24THELIMITSTATEFUNCTIONINTHECASEOFSEVERALNUMBEROFCYCLESOFDIFFERENTLOADINTENSITY,ASSUMINGTHATMINER’SRULEISOFAPPLICATION6,CANBEWRITTENINTHEFOLLOWINGWAYG?1?XDRININID2TNINUMBEROFCYCLESOFLOADLEVELDRIDUETOEXTERNALLOADSRANDOMVARIABLEANDNINUMBEROFCYCLESOFLOADLEVELDRITHATTHEBRIDGECANSUPPORTRANDOMVARIABLENIASARANDOMVARIABLEWILLBEOBTAINEDVIAASTRUCTURALANALYSISTAKINGINTOACCOUNTTHERANDOMNESSINTHELIVELOADSACTINGONTHEBRIDGEOR,ALTERNATIVELY,BYEXTRAPOLATIONOFMEASUREMENTSTAKENINTHEBRIDGEALSOTHEVARIABILITYOFTHEBRIDGEPROPERTIESSHOULDBECONSIDEREDINTHEDEFINITIONOFNIASTHESTRESSINCREMENTWILLALSODEPENDONTHESEPROPERTIESATTHEPRESENTSTAGEANDDESPITESOMEPRELIMINARYTESTS6,THEREISNOTYETACLEAREVIDENCETHATTHEMINER’SRULEISAPPLICABLETOMASONRYMATERIALASITSEEMSTOBEFORSTEELINTHISSENSE,THEREISSTILLALIMITATIONFORAFULLYAPPRAISALOFTHERESULTSOBTAINEDBYTHEAPPLICATIONOFTHEPROPOSEDASSESSMENTMETHODTHEWAYTODERIVETHESTATISTICSOFRANDOMVARIABLENIISBYSIMULATIONOFTRAFFICEFFECTSJOINTLYWITHSIMULATIONOFGEOMETRICANDMATERIALPROPERTIESOFTHESTRUCTURE24,25INTHECASEOFRAILWAYTRAFFICANDTAKINGINTOACCOUNTTHATTHESTRESSINCREMENTSDUETOBRIDGEDYNAMICSWILLBEVERYLOWFORTHISTYPEOFBRIDGESTHEINFILLMITIGATESTHEVIBRATIONLEVEL,ONEMAYCONSIDERTHEPASSAGEOFEACHCONVOYASACYCLEOFLOADINGTHESTATISTICALDEFINITIONOFNICANBEDONEINTHEFOLLOWINGWAYDIFFERENTWORKSHAVESHOWNTHATTHEWEIBULLDISTRIBUTIONFUNCTIONAGREESVERYWELLWITHTHEEXPECTEDPHYSICALCRITERIAOFPROGRESSIVEFATIGUEDETERIORATION26,27ONTHEBASISOFPHYSICALLYVALIDASSUMPTION,SOUNDEXPERIMENTALVERIFICATION,RELATIVEEASEINITSUSEANDBETTERDEVELOPEDSTATISTICS,THEWEIBULLDISTRIBUTIONHASBEENWIDELYUSEDFORTHEFATIGUEANALYSISOFMETALSITISALSOWELLSUITEDFORCERTAINPROCEDURESOFSTATISTICALEXTRAPOLATIONOFLARGESYSTEMS26IN27,28,THEDISTRIBUTIONOFFATIGUELIFEOFCONCRETEWASFOUNDALSOTOAPPROXIMATELYFOLLOWTHEWEIBULLDISTRIBUTIONSOMETHEORETICALANDEXPERIMENTALWORKS29,30HAVESHOWNALSOTHEFEASIBILITYOFTHEWEIBULLDISTRIBUTIONREGARDINGTHESTATISTICALMODELFORSTEELWIRESANDSTRANDSTOFATIGUERINGSEPARATIONFIG3FAILUREBYRINGSEPARATIONINAMULTIRINGARCHTESTCARRIEDOUTATTHEUNIVERSITYOFSALFORDUK4JRCASAS/CONSTRUCTIONANDBUILDINGMATERIALSXXX2010XXX–XXX3PLEASECITETHISARTICLEINPRESSASCASASJRRELIABILITYBASEDASSESSMENTOFMASONRYARCHBRIDGESCONSTRBUILDMATER2010,DOI101016/JCONBUILDMAT201010011
下載積分: 10 賞幣
上傳時間:2024-03-13
頁數(shù): 11
大?。?1.21(MB)
子文件數(shù):
-
簡介:中文中文7700字,字,5000單詞,單詞,28萬英文字符萬英文字符出處出處KOJM,NIYQTECHNOLOGYDEVELOPMENTSINSTRUCTURALHEALTHMONITORINGOFLARGESCALEBRIDGESJENGINEERINGSTRUCTURES,2008,271217151725畢業(yè)設計(論文)資料附件外文文獻原文及譯文學生姓名學號班級專業(yè)橋梁工程指導教師年月提供規(guī)劃和優(yōu)先橋梁檢查、修復、維修的依據(jù)和指令;V通過評估維修的有效性來監(jiān)測維修和重建,進而改造和維修工程;(VI)為橋梁研究的前沿領域提供大量的實測數(shù)據(jù),這些領域包括抗風抗震設計、新型結構和新型材料應用。制定和實施結構健康監(jiān)測系統(tǒng)并充分實現(xiàn)上述目標,在當下仍是一個挑戰(zhàn),它需要高度協(xié)調的跨學科研究來將其他領域的創(chuàng)新技術充分應用到土木工程體系中。實際上,結構健康研究已經成為近年來國際研究的一個主要課題1921,它包括遙感、通信、信號處理、數(shù)據(jù)管理、系統(tǒng)識別、信息技術等方面,對該課題的研究需要土木、機械、電氣和計算機工程等學科的合作。橋梁結構健康監(jiān)測目前面臨的挑戰(zhàn)正被定義為分布式和嵌入式傳感、數(shù)據(jù)管理和存儲、數(shù)據(jù)挖掘和知識發(fā)現(xiàn)、診斷方法以及能為橋梁業(yè)主/經理的維護和管理提供有用信息的簡報。本文中,作者通過對大規(guī)模橋梁健康監(jiān)測做法的現(xiàn)狀的觀察,站在研究者和實踐者的角度,并通過幾個健康監(jiān)測的典范探索出應對上述挑戰(zhàn)的關鍵技術。2橋梁健康監(jiān)測的工作狀態(tài)橋梁結構長期健康監(jiān)測系統(tǒng)的成功實施和運行已經廣為人知。目前為止,已有大約40座大跨度橋梁(含100米或更長)接受過結構健康監(jiān)測系統(tǒng)的檢測,它們之中的典型代表有德瑪克的大貝爾特海峽大橋1、加拿大的聯(lián)邦大橋23、香港的青馬橋24、美國的巴里橋25、日本的明石海峽大橋26和韓國的西海大橋27。表1列出了中國20座用實時監(jiān)測系統(tǒng)監(jiān)測的橋梁(包括香港特別行政區(qū)),表中不包括東海大橋(由420米和332米的兩座斜拉橋組成)、杭州灣跨海大橋(由主跨分別為448米和318米的斜拉橋組成)和第三南京長江大橋(主跨為648米的斜拉橋),這座橋的長期結構健康監(jiān)測系統(tǒng)正在設計中。幾個關于大規(guī)模橋梁健康監(jiān)測的近期發(fā)展趨勢值得一提。I對于最近的一些橋梁,如深圳西部通道、昂船洲大橋、上海崇明隧道(主跨1200米的斜拉橋)和墨西拿海峽大橋(主跨3300米的特大懸索橋),健康監(jiān)測系統(tǒng)的設計成為了橋梁設計招標的一部分。橋梁設計和檢測系統(tǒng)的整合既保證了工程師們密切關注的問題反映在了監(jiān)測系統(tǒng)之中,又考慮了民間關于實施健康監(jiān)測的規(guī)定;II新建橋梁上長期監(jiān)測系統(tǒng)的實施,如錢江四橋、深圳西部通道、昂船洲大橋和蘇通長江大橋完成了與施工進度同步,由此一來,類似于腐蝕傳感器、應變計和光纖傳感器的特定類型的單向傳感器可以在橋梁施工的特定階段嵌入到結構中;III最近制定的長期健康監(jiān)測系統(tǒng)強調對橋梁完整性、耐用性
下載積分: 10 賞幣
上傳時間:2024-03-17
頁數(shù): 17
大小: 2.05(MB)
子文件數(shù):