2023年全國(guó)碩士研究生考試考研英語(yǔ)一試題真題(含答案詳解+作文范文)_第1頁(yè)
已閱讀1頁(yè),還剩44頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、狄氏型源于數(shù)學(xué)物理中的經(jīng)典位勢(shì)論。九十年代初,馬志明等入建立了擬正則狄氏型與右連續(xù)馬氏過(guò)程一一對(duì)應(yīng)的關(guān)系,這種對(duì)應(yīng)關(guān)系在經(jīng)典位勢(shì)論與隨機(jī)分析間架設(shè)了一座橋粱,通過(guò)這個(gè)橋粱我們可以將一些分析問(wèn)題與隨機(jī)分析問(wèn)題相互轉(zhuǎn)兒,從而狄氏型在位勢(shì)理論、馬氏過(guò)程、隨機(jī)微分力程、算法、量子力學(xué)、量子場(chǎng)論等許多相關(guān)領(lǐng)域都有應(yīng)用,為許多數(shù)學(xué)物理問(wèn)題提供了強(qiáng)有力的理論基礎(chǔ),因此對(duì)狄氏型的研究有重要現(xiàn)實(shí)意義。對(duì)于過(guò)程的變換,它一直都是數(shù)學(xué)家和物理學(xué)家共同感興趣的

2、研究課題。通過(guò)變換得到新的過(guò)程及其聯(lián)系的狄氏型,而對(duì)新的過(guò)程及其聯(lián)系的狄氏型的性質(zhì)的研究與討論,很大程度上豐富了狄氏型與過(guò)程的內(nèi)容。由于Girsanov變換與過(guò)程的絕對(duì)連續(xù)性問(wèn)題的研究有著密切的聯(lián)系,許多學(xué)者都對(duì)它講行研究并取得了許多重要研究成果。設(shè)(E,D(E))為狄氏型,u∈D(E),Nut是關(guān)于u(Xt)的Fukushima分解的零能量可加泛函。陳傳鐘等入在[4,6]中主要討論了形如:
  pf(x)=Ex[e-nf(Xt)

3、]t≥o∨∫∈L2(m)的關(guān)于Fukushima分解零能量可加泛函的廣義Feynman-Kac半群。研究廣義Feynman-Kac半群P ut的主要困難在于Nut可能是無(wú)界變差的。作者通過(guò)Girsanov變換、狄氏型擾動(dòng)和h-變換三個(gè)步驟,成功地將無(wú)界變差的問(wèn)題轉(zhuǎn)兒為有界變差的問(wèn)題。這里的Girsanov變換允許u是無(wú)界的,并巳經(jīng)過(guò)Girsanov變換后得到新的過(guò)程過(guò)程X的手死測(cè)度繼續(xù)存在,從而補(bǔ)亢和推廣了張上生等在文章[5,25]中的

4、相應(yīng)結(jié)果。但是對(duì)于變換后所得到的新過(guò)程及其聯(lián)系狄氏型的相關(guān)性質(zhì)如暫留性、常返性、不可約性等很少討論。
  本文主要對(duì)一類強(qiáng)局部狄氏型所聯(lián)系的隨機(jī)過(guò)程的Girsanov變換講行研究,討論過(guò)程變換后得到的新過(guò)程X以及它聯(lián)系的狄氏型(E,D(E))的相關(guān)性質(zhì)。首先我們給出當(dāng)u∈D(E)有界時(shí),Girsanov變換后型的具體表達(dá)式,并證明此時(shí)的I沒(méi)有E-polar集,講而得到函數(shù)的擬連續(xù)和一般的連續(xù)性等價(jià)。我們還得到對(duì)于更一般的u∈D(E

5、),Girsanov變換后狄氏型的表達(dá)式。其次通過(guò)討論I的邊界點(diǎn)r1,r2,得出當(dāng)r1, r2均正則時(shí),u是有界的,由前面結(jié)論自然有型的表達(dá)式,并巳證明(E, D(E))是L2([r1, r2];1I.m)上的一個(gè)正則、強(qiáng)局部、常返、不可約狄氏型;當(dāng)r1, r2為可達(dá)非正則時(shí),得到此時(shí)u仍有界,巳(E,D(E))是L2(I,m)上的一個(gè)正則、強(qiáng)局部、暫留、不可約狄氏型。我們還討論了當(dāng)u有界時(shí)X的軌道性質(zhì)。對(duì)于滿足隨機(jī)微分方程:
 

6、 dX(t)=μ(X(x))dt+σ(X(t))dB(t)的擴(kuò)散過(guò)程X(t),其算子定義為
  Lf(x)=σ2(x)fn(x)+u(x)f1(x)
  這里的L就是本文所研究的一維擴(kuò)散過(guò)程X所聯(lián)系的狄氏型(E,D(E))對(duì)應(yīng)的生成元。算子在研究隨機(jī)微分力程中有著非常重要的作用,因此也是很多研究者感興趣的研究對(duì)象。文章最后我們通過(guò)觀察過(guò)程經(jīng)過(guò)Girsanov變換前后所聯(lián)系的狄氏型的變兒,給出并嚴(yán)格證明了變換后的過(guò)程所聯(lián)系狄氏

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論