隨機邊界模型-中山大學(xué)嶺南_第1頁
已閱讀1頁,還剩34頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、隨機邊界模型Stochastic Frontier Models,連玉君中山大學(xué) 嶺南學(xué)院arlionn@163.com2013年12月9日 New Course: http://baoming.pinggu.org/Default.aspx?id=93,提綱,SFA 簡介截面SFA模型面板SFA模型雙邊SFA模型,I. SFA 簡介,SFA 的模型設(shè)定思想,,,,,,SFA 圖示,y1,,,,,,,,,,,Sourc

2、e: Porcelli(2009),實證分析中的模型設(shè)定,,Q: 兩個干擾項如何處理?,,,Note: 假設(shè) v, u 不相關(guān),且二者與 x 也不相關(guān),正態(tài)分布和半正態(tài)分布的密度函數(shù)圖,指數(shù)分布的密度函數(shù)圖,半正態(tài)分布和指數(shù)分布對比,效率的估計,Jondrow, Lovell, Materov and Schmidt (1982),JLMS82 Battese and Coelli (1988),BC88,Review: li

3、near FE v.s. RE)FE (Fixed Effect Model) RE (Random Effect Model)Pooled OLS,II. 面板隨機邊界模型Panel SFA,,可能的通用模型: ai : 公司個體效應(yīng), N -1 個公司虛擬變量; ?i : 不隨時間變化的常規(guī)干擾項; vit : 隨時間變化的常規(guī)干擾項; ?+i : 不隨

4、時間變化的無效率項 (persistent component) u+it : 隨時間變化的無效率項 (transient component),II. 面板隨機邊界模型Panel SFA,,Panel SFA: Pooled SFA model,Pitt and Lee (1981), PL81,Panel SFA:隨機效應(yīng)模型 (RE-SFA)效率不隨時間變化,,Schmidt and Sickles (198

5、4), SS84TE的估計,Panel SFA:固定效應(yīng)模型 (FE-SFA)效率不隨時間變化,,,,Cornwell, Schmidt and Sickles (1990), CSS90Lee and Schmidt (1993), LS93,Panel SFA: 效率時變模型,,,Battese and Coelli(1992), BC92, 應(yīng)用非常廣泛,Panel SFA: 效率時變模型,,Greene難題

6、(Greene Problem)True-Model:Estimate-Model: Implications: TE 的估計值將是有偏的把那些個體異質(zhì)性(公司文化, CEO特征等)影響產(chǎn)出的因素都?xì)w為“無效率項”了,Panel SFA: True FE SFA,,,,Greene(2005), TFE估計方法: 蠻力法 (brute force approach)直接估 N 個公司虛擬變量和 k 個 ? 參

7、數(shù)即可需要采用一些特殊的數(shù)值計算技巧,Panel SFA: True FE SFA,Greene(2005), TRE估計方法: MLE相對于傳統(tǒng)的線性 RE 模型,只是增加了一個參數(shù)而已,Panel SFA: True RE SFA,Tsionas and Kumbhakar (2013), G-TRE對比: TRE,Panel SFA: Generalized TRE SFA,,Wang and Ho (20

8、10), Scaling-TFEgit:scaling function, 是公司特征變量(zit)的函數(shù)git:可以使非效率具有異質(zhì)性;git:縮放性質(zhì)使得我們可以用FD或組內(nèi)去心去除個體效應(yīng) ?i,Panel SFA: Scaling-TFE SFA,,Ahn and Sickles (2000), Dynamic-SFA?i :用于衡量第 i 家公司對非效率項的調(diào)整能力(speed)?i 越大,表明公司克服其

9、非效率行為的能力越強,Panel SFA: dynamic SFA,,異質(zhì)性 SFA: Heterogeneous SFA,,,,,基本思想,模型設(shè)定思想異方差的設(shè)定(不確定性)均值的設(shè)定(無效率水平),異質(zhì)性 SFA: Heterogeneous SFA,,,,,基本思想,雙邊隨機邊界模型: two-tier SFA,模型設(shè)定效率的估計,雙邊隨機邊界模型: two-tier SFA,Thanks,New Cour

10、se: http://baoming.pinggu.org/Default.aspx?id=93,References 1,Aigner, D., C. Lovell, P. Schmidt, 1977, Formulation and estimation of stochastic frontier production function models, Journal of Econometrics, 6 (1): 21-37.

11、Arellano, M., S. Bond, 1991, Some tests of specification for panel data: Monte carlo evidence and an application to employment equations, Review of Economic Studies, 58 (2): 277-297.Arellano, M., O. Bover, 1995, Another

12、 look at the instrumental variable estimation of error-components models, Journal of Econometrics, 68 (1): 29-51.Battese, G., T. Coelli, 1992, Frontier production functions, technical efficiency and panel data: With app

13、lication to paddy farmers in india, Journal of Productivity Analysis, 3 (1): 153-169.Battese, G. E., T. J. Coelli, 1988, Prediction of firm-level technical efficiencies with a generalized frontier production function an

14、d panel data, Journal of Econometrics, 38 (3): 387-399.Battese, G. E., T. J. Coelli, 1995, A model for technical inefficiency effects in a stochastic frontier production function for panel data, Empirical Economics, 20

15、(2): 325-332.Belotti, F., S. Daidone, G. Ilardi, V. Atella, 2013, Stochastic frontier analysis using stata, Stata Journal: forthcoming.Chang, S. K., Y. Y. Chen, H. J. Wang, 2012, A bayesian estimator for stochastic fro

16、ntier models with errors in variables, Journal of Productivity Analysis, 38 (1): 1-9.Chen, N.-K., Y.-Y. Chen, H.-J. Wang, 2011, Asset prices and capital investment–a panel stochastic frontier approach, Working Paper.,Re

17、ferences 2,Coelli, T., D. Prasada Rao, G. E. Battese. An introduction to efficiency and productivity analysis[M]. Boston: Kluwer Academic Publishers 1998.Colombi, R., G. Martini, G. Vittadini, 2011, A stochastic frontie

18、r model with short-run and long-run inefficiency, Working Paper, Department of Economics and Technology Management, Universita di Bergamo, Italy.Emvalomatis, G., 2012, Adjustment and unobserved heterogeneity in dynamic

19、stochastic frontier models, Journal of Productivity Analysis, 37 (1): 7-16.Feng, G., A. Serletis, 2009, Efficiency and productivity of the us banking industry, 1998–2005: Evidence from the fourier cost function satisfyi

20、ng global regularity conditions, Journal of Applied Econometrics, 24 (1): 105-138.Fried, H. O., C. Lovell, S. S. Schmidt. 2008, Efficiency and productivity[C], in H. O. Fried, C. Lovell,S. S. Schmidt eds, The measuremen

21、t of productive efficiency and productivity change (Oxford University Press, New York) 3-92.Greene, W., 2005a, Fixed and random effects in stochastic frontier models, Journal of Productivity Analysis, 23 (1): 7-32.Gree

22、ne, W., 2005b, Reconsidering heterogeneity in panel data estimators of the stochastic frontier model, Journal of Econometrics, 126 (2): 269-303.Greene, W., 2008, The econometric approach to efficiency analysis, The Meas

23、urement of Productive Efficiency and Productivity Change, 1 (5): 92-251.,References 3,Habib, M., A. Ljungqvist, 2005, Firm value and managerial incentives: A stochastic frontier approach, Journal of Business, 78 (6): 205

24、3-2094.Hadri, K., 1999, Estimation of a doubly heteroscedastic stochastic frontier cost function, Journal of Business & Economic Statistics, 17 (3): 359-363.Huang, C. J., J.-T. Liu, 1994, Estimation of a non-neutra

25、l stochastic frontier production function, Journal of Productivity Analysis, 5 (2): 171-180.Jondrow, J., K. Lovell, I. Materov, P. Schmidt, 1982, On the estimation of technical inefficiency in the stochastic frontier pr

26、oduction function model, Journal of Econometrics, 19 (2-3): 233-238.Koutsomanoli-Filippaki, A., E. C. Mamatzakis, 2010, Estimating the speed of adjustment of european banking efficiency under a quadratic loss function,

27、Economic Modelling, 27 (1): 1-11.Kumbhakar, S., F. Christopher, 2009, The effects of bargaining on market outcomes: Evidence from buyer and seller specific estimates, Journal of Productivity Analysis, 31 (1): 1-14.Kumb

28、hakar, S., G. Lien, J. B. Hardaker, 2012a, Technical efficiency in competing panel data models: A study of norwegian grain farming, Journal of Productivity Analysis: 1-17.,References 4,Kumbhakar, S., C. Lovell. Stochasti

29、c frontier analysis[M]. Cambridge: Cambridge University Press, 2000.Kumbhakar, S., R. Ortega-Argilés, L. Potters, M. Vivarelli,P. Voigt, 2012b, Corporate r&d and firm efficiency: Evidence from europe’s top r&am

30、p;d investors, Journal of Productivity Analysis, 37 (2): 125-140.Kumbhakar, S. C., 1990, Production frontiers, panel data, and time-varying technical inefficiency, Journal of Econometrics, 46 (1): 201-211.Kumbhakar, S.

31、 C., S. Ghosh, J. T. McGuckin, 1991, A generalized production frontier approach for estimating determinants of inefficiency in us dairy farms, Journal of Business & Economic Statistics, 9 (3): 279-286.Kumbhakar, S.

32、C., C. F. Parmeter, E. G. Tsionas, 2013, A zero inefficiency stochastic frontier model, Journal of Econometrics, 172 (1): 66-76.Kumbhakar, S. C., E. G. Tsionas, 2011, Some recent developments in efficiency measurement i

33、n stochastic frontier models, Journal of Probability and Statistics, 2011: forthcoming.Lai, H.-p., C. J. Huang, 2011, Maximum likelihood estimation of seemingly unrelated stochastic frontier regressions, Journal of Prod

34、uctivity Analysis: 1-14.,References 5,Lee, Y. H., P. Schmidt. 1993, A production frontier model with flexible temporal variation in technical efficiency[C], in H. Fried, C. Lovell,S. Schmidt eds, The measurement of produ

35、ctive efficiency: Techniques and applications (Oxford University Press, Oxford, UK) 237-255.Lian, Y., C.-F. Chung, 2008, Are chinese listed firms over-investing?, SSRN working paper, Available at SSRN: http://ssrn.com/a

36、bstract=1296462.Meeusen, W., J. Van den Broeck, 1977, Efficiency estimation from cobb-douglas production functions with composed error, International Economic Review, 18 (2): 435-444.Peyrache, A., A. N. Rambaldi, 2012,

37、 A state-space stochastic frontier panel data model, working Paper.Pitt, M. M., L.-F. Lee, 1981, The measurement and sources of technical inefficiency in the indonesian weaving industry, Journal of Development Economics

38、, 9 (1): 43-64.Tsionas, E. G., S. C. Kumbhakar, 2013, Firm-heterogeneity, persistent and transient technical inefficiency:A generalized true random effects model, Journal of Applied Econometrics: forthcoming.,References

39、 6,Wang, E. C., 2007, R&d efficiency and economic performance: A cross-country analysis using the stochastic frontier approach, Journal of Policy Modeling, 29 (2): 345-360.Wang, H., 2003, A stochastic frontier analy

40、sis of financing constraints on investment: The case of financial liberalization in taiwan, Journal of Business and Economic Statistics, 21 (3): 406-419.Wang, H. J., C. W. Ho, 2010, Estimating fixed-effect panel stochas

41、tic frontier models by model transformation, Journal of Econometrics, 157 (2): 286-296.Yélou, C., B. Larue, K. C. Tran, 2010, Threshold effects in panel data stochastic frontier models of dairy production in canada

42、, Economic Modelling, 27 (3): 641-647.白俊紅, 江可申, 李婧, 2009, 應(yīng)用隨機前沿模型評測中國區(qū)域研發(fā)創(chuàng)新效率, 管理世界, (10): 51-61.林伯強, 杜克銳, 2013, 要素市場扭曲對能源效率的影響, 經(jīng)濟研究, (9): 125-136.劉海洋, 逯宇鐸, 陳德湖, 2013, 中國國有企業(yè)的國際議價能力估算, 統(tǒng)計研究, (5): 47-53.盧洪友, 連玉君, 盧盛

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論