版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、理論力學(xué),臨沂大學(xué)機(jī)械工程學(xué)院機(jī)械系,徐 波,上次課 主要內(nèi)容,上次課 主要內(nèi)容,上次課 主要內(nèi)容,上次課 主要內(nèi)容,匯交力系求合力,力對(duì)點(diǎn)之矩,力對(duì)點(diǎn)之矩和力對(duì)軸之矩的關(guān)系,上次課 主要內(nèi)容,上次課 主要內(nèi)容,上次課 主要內(nèi)容,上次課 主要內(nèi)容,思 考 題,1. 力在空間直角坐標(biāo)軸上的投影和此力沿該坐標(biāo)軸的分力有何區(qū)別和聯(lián)系?2. 設(shè)一個(gè)力F,并
2、選取x軸,問(wèn)力F與x軸在何種情況下Fx=0,Mx(F)=0?在何種情況下Fx=0,Mx(F)≠0?又在何種情況下Fx≠0,Mx(F)=0?3.如果力F與y軸的夾角為β,問(wèn)在什么情況下此力在z軸上的投影為Fz=Fsinβ?并求該力在x軸上的投影。4. 位于兩相交平面內(nèi)的兩力偶能否等效,能否組成平衡力系?5.為什么說(shuō)力偶矩矢是自由矢量?力矩矢是自由矢量嗎?試說(shuō)明其理由。,一、空間任意力系向一點(diǎn)簡(jiǎn)化,第四節(jié) 空間任意力系向一點(diǎn)的簡(jiǎn)化&
3、#183;主矢和主矩,,,,,,,,一、空間任意力系向一點(diǎn)簡(jiǎn)化,第四節(jié) 空間任意力系向一點(diǎn)的簡(jiǎn)化·主矢和主矩,第四節(jié) 空間任意力系向一點(diǎn)的簡(jiǎn)化·主矢和主矩,1、主矢,二、主矢與主矩,二、主矢與主矩,第四節(jié) 空間任意力系向一點(diǎn)的簡(jiǎn)化·主矢和主矩,2、主矩Mo:,第四節(jié) 空間任意力系向一點(diǎn)的簡(jiǎn)化·主矢和主矩,二、主矢與主矩,例題四,第四節(jié) 空間任意力系向一點(diǎn)的簡(jiǎn)化·主矢和主矩,在棱
4、長(zhǎng)為 的正方體的頂角 和 處,分別作用力 和 。求此兩力在 , , 軸上的投影和對(duì) , , 軸的矩。并將圖中的力系向點(diǎn) 簡(jiǎn)化,用解析式表示主矢、主矩的大小和方向。,例題四,第四節(jié) 空間任意力系向一點(diǎn)的簡(jiǎn)化·主矢和主矩,第四節(jié) 空間任意力系向一點(diǎn)的簡(jiǎn)化·主矢和主矩,三、空間任意力系的簡(jiǎn)化結(jié)果分析,三、空間任意力系的簡(jiǎn)化結(jié)果分析,第四節(jié) 空間任意力系向一點(diǎn)的簡(jiǎn)化·主矢和主矩,合力,力螺旋,
5、,,,,M0//FR,三、空間任意力系的簡(jiǎn)化結(jié)果分析,第四節(jié) 空間任意力系向一點(diǎn)的簡(jiǎn)化·主矢和主矩,FR與M0既不平行也不垂直,夾角 時(shí),力螺旋中心軸距簡(jiǎn)化中心為,一、空間任意力系的平衡方程,第五節(jié) 空間任意力系的平衡方程,二、空間平行力系的平衡方程,空間任意力系平衡的充要條件:所有各力在三個(gè)坐標(biāo)軸中每一個(gè)軸上的投影的代數(shù)和等于零,以及這些力對(duì)于每一個(gè)坐標(biāo)軸的矩的代數(shù)和也等于零。,空間一般力系,,空間匯交力系,,空間力
6、偶系,,空間平行力系,,平衡方程,第五節(jié) 空間任意力系的平衡方程,三、求解空間任意力系平衡問(wèn)題的要點(diǎn),第五節(jié) 空間任意力系的平衡方程,(1)求解空間力系的平衡問(wèn)題,其解題步驟與平面力系相同,即先確定研究對(duì)象,再進(jìn)行受力分析,畫(huà)出受力圖,最后列出平衡方程求解。但是,由于力系中各力在空間任意分布,故某些約束的類(lèi)型及其反力的畫(huà)法與平面力系有所不同。(2)為簡(jiǎn)化計(jì)算,在選擇投影軸與力矩軸時(shí),注意使軸與各力的有關(guān)角度及尺寸為已知或較易求出,
7、并盡可能使軸與大多數(shù)的未知力平行或相交,這樣在計(jì)算力在坐標(biāo)軸上的投影或力對(duì)軸之矩就較為方便,且使平衡方程中所含未知量較少。同時(shí)注意,空間力偶對(duì)軸之矩等于力偶矩矢在該軸上的投影。,(4)求解空間力系平衡問(wèn)題,有時(shí)采用將該力系向三個(gè)正交的坐標(biāo)平面投影的方法,把空間力系的平衡問(wèn)題轉(zhuǎn)化為平面問(wèn)題求解。這時(shí)必須注意正確確定各力在投影面中投影的大小、方向及作用點(diǎn)的位置。,三、求解空間任意力系平衡問(wèn)題的要點(diǎn),第五節(jié) 空間任意力系的平衡方程,(3)根
8、據(jù)題目特點(diǎn),可選用不同形式的平衡方程。所選投影軸不必相互垂直,也不必與矩軸重合。當(dāng)用力矩方程取代投影方程時(shí),必須附加相應(yīng)條件以確保方程的獨(dú)立性。但由于這些附加條件比較復(fù)雜,故具體應(yīng)用時(shí),只要所建立的一組平衡方程,能解出全部未知量,則說(shuō)明這組平衡方程是彼此獨(dú)立的,已滿足了附加條件。,四、空間約束類(lèi)型,(1)空間鉸鏈:,(2)徑向軸承:,第五節(jié) 空間任意力系的平衡方程,(3)徑向止推軸承:,(4)空間固定端:,第五節(jié) 空間任意力系的平衡
9、方程,第五節(jié) 空間任意力系的平衡方程,例題五,三輪推車(chē)如圖所示。已知AH=BH=0.5m,CH=1.5m,EH=0.3m,ED=0.5m,所載重物的重量W=1.5kN,作用在D點(diǎn),推車(chē)的自重忽略不計(jì)。試求A、B、C三輪所受的壓力。,第五節(jié) 空間任意力系的平衡方程,例題五,AH=BH=0.5m,CH=1.5m,EH=0.3m,ED=0.5m,W=1.5kN,第五節(jié) 空間任意力系的平衡方程,例題五,AH=BH=0.5m,CH=1
10、.5m,EH=0.3m,ED=0.5m,W=1.5kN,例4-8,解:研究對(duì)象:小車(chē),列平衡方程,,第五節(jié) 空間任意力系的平衡方程,解:研究對(duì)象,曲軸,列平衡方程,第五節(jié) 空間任意力系的平衡方程,第五節(jié) 空間任意力系的平衡方程,,第五節(jié) 空間任意力系的平衡方程,第五節(jié) 空間任意力系的平衡方程,不計(jì)重量的正方形薄板,由六根直桿支持如圖所示 .假設(shè)這六根桿都可以看作兩力桿 ,求在力P作用下各桿的內(nèi)力。,例題六,第五節(jié)
11、空間任意力系的平衡方程,解: (1)取薄板為研究對(duì)象畫(huà)受力圖并選取坐標(biāo).,,,S1,S2,S3,S5,S6,,,x,y,z,,,,S4,,例題六,第五節(jié) 空間任意力系的平衡方程,例題六,寫(xiě)出各力的解析式,第五節(jié) 空間任意力系的平衡方程,例題六,(0, a, 0),(-a,a,0),(0,0,0),各力對(duì)A點(diǎn)的矩.,第五節(jié) 空間任意力系的平衡方程,? Fyi = 0,? Fzi= 0,? Mx(Fi) = 0,? My(Fi) =
12、0,? Fxi = 0,? Mz(Fi) = 0,例題六,第五節(jié) 空間任意力系的平衡方程,例題六,S1 = S6 = - P,S4= P,S2 = S3 =,S5 = -,一、平行力系中心,,FR = F1+F2,由合力矩定理可確定合力作用點(diǎn)C:,★ 平行力系的合力作用點(diǎn)的位置僅與各平行力的大小和作用點(diǎn)的位置有關(guān),而與各平行力的方向無(wú)關(guān)。稱(chēng)該點(diǎn)為此平行力系的中心。,第六節(jié) 重心,由合力矩定理,得,設(shè)力的作用線方向產(chǎn)單位矢量為 F0,
13、,,,第六節(jié) 重心,二、計(jì)算重心坐標(biāo)的公式,第六節(jié) 重心,計(jì)算重心坐標(biāo)的公式為,對(duì)均質(zhì)物體,均質(zhì)板狀物體,有,稱(chēng)為重心或形心公式,第六節(jié) 重心,(1)簡(jiǎn)單幾何形狀物體的重心,解: 取圓心 O 為坐標(biāo)原點(diǎn),三、 確定物體重心的方法,半圓形的重心:,第六節(jié) 重心,(2)用組合法求重心,(a) 分割法,x1=-15, y1=45, A1=300x2=5, y2=30, A2=400x3=15
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 理論力學(xué)課后習(xí)題詳解-第3章-空間力系
- 空間力系的受力分析
- 第4章空間力系
- 空間力系工程力學(xué)
- 第2-3次作業(yè)答案(平面力系)
- 2-3 彈性半空間地基模型
- 第六章 空間力系 重心
- 高中數(shù)學(xué)3-2第3課時(shí)空間向量與空間角
- 理論力學(xué) 第四章 空間力系
- 煤礦液壓支架空間力系分析方法研究.pdf
- 電力系統(tǒng)暫態(tài)穩(wěn)定空間并行仿真.pdf
- 空間向量3
- 2016年電力系統(tǒng)繼電保護(hù) ( 第1、2、3次 )作業(yè)
- 空間向量2
- 空間向量 (2)
- 電力系統(tǒng)外文翻譯3
- 3_空間組合
- 單元2-平面力系的平衡
- 基于空間譜估計(jì)的電力系統(tǒng)諧波檢測(cè).pdf
- 3電力系統(tǒng)工程基礎(chǔ)
評(píng)論
0/150
提交評(píng)論