版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、…中子流形的滅613比8數(shù)量曲率泛函的第一變分作者姓名:時(shí)曉華導(dǎo)師姓名:胡澤軍教授學(xué)科門類:理學(xué)專業(yè)名稱:基礎(chǔ)數(shù)學(xué)培養(yǎng)院系:數(shù)學(xué)與統(tǒng)計(jì)學(xué)院成時(shí)間:2015年4月學(xué)校代碼10459學(xué)號(hào)或申請(qǐng)?zhí)?01212141543密級(jí)文士學(xué)原創(chuàng)性聲明本人的學(xué)位論文是在導(dǎo)師指導(dǎo)下獨(dú)立撰寫并完成的,學(xué)位論文沒有剽竊、抄襲等違反學(xué)術(shù)道德、學(xué)術(shù)規(guī)范的侵權(quán)行為,否則,本人愿意承擔(dān)由此產(chǎn)生的一切法律責(zé)任和法律后果,特此鄭重聲明^學(xué)位論文作者:年月日學(xué)位論文使用授權(quán)
2、聲明本人在導(dǎo)師指導(dǎo)下完成的論文及相關(guān)的職務(wù)作品知識(shí)產(chǎn)權(quán)歸屬鄭州大學(xué).根據(jù)鄭州大學(xué)有關(guān)保留、使用學(xué)位論文的規(guī)定,同意學(xué)校保留或向國家有關(guān)部門或機(jī)構(gòu)送交論文的復(fù)印件和電子版,允許論文被查閱和借閱;本人授權(quán)鄭州大學(xué)可以將本學(xué)位論文的全部或部分編入有關(guān)數(shù)據(jù)庫進(jìn)行檢索,可以采用影印、縮印或者其他復(fù)制手段保存論文和匯編本學(xué)位論文.本人離校后發(fā)表、使用學(xué)位論文或與該學(xué)位論文直接相關(guān)的學(xué)術(shù)論文或成果時(shí),第一署名單位仍然為鄭州大學(xué).保密論文在解密后應(yīng)遵守
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 局部對(duì)稱的負(fù)曲率流形中子流形的幾何剛性.pdf
- 關(guān)于常曲率空間形式中子流形的一些結(jié)果.pdf
- 子流形的廣義Willmore泛函及其變分問題.pdf
- 黎曼流形中子流形的剛性問題.pdf
- 球面中子流形的余維數(shù)壓縮定理.pdf
- 負(fù)pinched流形中子流形的整體pinching定理.pdf
- 20846.近切觸流形中子流形的相關(guān)問題
- 乘積流形中子流形的整體性質(zhì)研究.pdf
- 球面中子流形的幾何與拓?fù)溲芯?pdf
- 關(guān)于空間形式中子流形幾何的某些結(jié)果.pdf
- 具有平行Ricci曲率黎曼子流形與Sn+1中Mobius超曲面的探討.pdf
- 具有平行ricci曲率黎曼子流形與sn1中mobius超曲面的探討
- 復(fù)射影空間中子流形的幾何與拓?fù)溲芯?pdf
- 四維Minkowski空間中子流形的微分幾何.pdf
- 3維Anti de Sitter空間中子流形的局部微分幾何.pdf
- 空間型中子流形的第一特征值及超曲面的r-穩(wěn)定性.pdf
- 泛函分析與變分原理復(fù)習(xí)題
- 關(guān)于常數(shù)數(shù)量曲率的子流形和Finsler流形上的調(diào)和函數(shù).pdf
- 思維一變 風(fēng)光無限
- F-能量泛函的第二變分公式及其應(yīng)用.pdf
評(píng)論
0/150
提交評(píng)論