版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、模糊TS神經(jīng)網(wǎng)絡(luò)結(jié)合了TS模糊系統(tǒng)和神經(jīng)網(wǎng)絡(luò)兩者的特點(diǎn),其不但能夠處理語(yǔ)言知識(shí)和大量數(shù)據(jù),也能有效地對(duì)復(fù)雜系統(tǒng)進(jìn)行建模和控制。TS模糊系統(tǒng)是線(xiàn)性形式,從數(shù)值逼近的角度出發(fā),該系統(tǒng)是若干個(gè)分片線(xiàn)性模型的加權(quán)求和,即在局部區(qū)域用線(xiàn)性模型近似原模型。為了進(jìn)一步提高模型的逼近精度,本文提出基于Taylor展式的模糊TS系統(tǒng),并借助神經(jīng)網(wǎng)絡(luò)來(lái)辨識(shí)模型的參數(shù),將其用于對(duì)非線(xiàn)性函數(shù)、動(dòng)力學(xué)模型及時(shí)間序列模型的逼近。論文工作如下:
第一,論文
2、提出了多輸入多輸出的二階Taylor-TS系統(tǒng)模型和二階Taylor-TS模糊神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu);
第二,將二階Taylor-TS模糊神經(jīng)網(wǎng)絡(luò)應(yīng)用到非線(xiàn)性函數(shù)和動(dòng)力學(xué)模型的建模中,采用的是梯度下降算法(Taylor-TS-GD),最后將仿真結(jié)果與其他算法進(jìn)行比較,結(jié)果表明Taylor-TS模糊神經(jīng)網(wǎng)絡(luò)在逼近性能和精度方面有所提高;
第三,應(yīng)用分步學(xué)習(xí)策略對(duì)二階Taylor-TS模糊神經(jīng)網(wǎng)絡(luò)進(jìn)行辨識(shí)。采用PSO算法、擬牛頓
3、算法和梯度下降算法:PSO算法和梯度下降算法分別用于對(duì)網(wǎng)絡(luò)前件隸屬函數(shù)參數(shù)的初始化和辨識(shí);擬牛頓算法用于對(duì)后件參數(shù)的調(diào)節(jié)。將分步學(xué)習(xí)辨識(shí)方法應(yīng)用到非線(xiàn)性函數(shù)和動(dòng)力學(xué)模型的仿真中,結(jié)果表明相較于其他算法,分布學(xué)習(xí)方法能有效地提高逼近性能和逼近精度;
第四,將二階Taylor-TS模糊神經(jīng)網(wǎng)絡(luò)應(yīng)用到典型時(shí)間序列的預(yù)測(cè)中。首先將二階Taylor-TS模糊神經(jīng)網(wǎng)絡(luò)進(jìn)行結(jié)構(gòu)優(yōu)化;其次,采用引入閾值的方式優(yōu)化可調(diào)參數(shù)的個(gè)數(shù),進(jìn)而提高網(wǎng)絡(luò)的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于二型模糊神經(jīng)網(wǎng)絡(luò)的系統(tǒng)辨識(shí)算法研究.pdf
- 基于神經(jīng)網(wǎng)絡(luò)優(yōu)化算法的二階系統(tǒng)解耦研究.pdf
- 基于二階灰色神經(jīng)網(wǎng)絡(luò)的工作面瓦斯涌出量預(yù)測(cè).pdf
- 基于協(xié)同PSO算法的模糊辨識(shí)與神經(jīng)網(wǎng)絡(luò)學(xué)習(xí).pdf
- 二階對(duì)角遞歸神經(jīng)網(wǎng)絡(luò)的算法研究及應(yīng)用.pdf
- 基于模糊神經(jīng)網(wǎng)絡(luò)的開(kāi)關(guān)磁阻電機(jī)換相邏輯辨識(shí).pdf
- 基于層遞式模糊神經(jīng)網(wǎng)絡(luò)的非線(xiàn)性系統(tǒng)辨識(shí).pdf
- 基于模糊神經(jīng)網(wǎng)絡(luò)的圖像模糊分割.pdf
- 基于神經(jīng)網(wǎng)絡(luò)的系統(tǒng)辨識(shí)與控制.pdf
- 基于ts模糊模型的辨識(shí)方法的研究
- 一類(lèi)時(shí)滯二階Hopfield神經(jīng)網(wǎng)絡(luò)的動(dòng)力行為研究.pdf
- 模糊神經(jīng)網(wǎng)絡(luò)
- 基于神經(jīng)網(wǎng)絡(luò)的系統(tǒng)辨識(shí)方法研究.pdf
- 基于模糊神經(jīng)網(wǎng)絡(luò)的駕駛員制動(dòng)意圖辨識(shí)技術(shù)研究.pdf
- 基于C-PSODE算法的模糊RBF神經(jīng)網(wǎng)絡(luò)非線(xiàn)性系統(tǒng)辨識(shí).pdf
- 應(yīng)用于單比特人工神經(jīng)網(wǎng)絡(luò)的高速二階ΣΔ調(diào)制器設(shè)計(jì).pdf
- 基于神經(jīng)網(wǎng)絡(luò)的木材干燥模型辨識(shí)研究.pdf
- 基于BP神經(jīng)網(wǎng)絡(luò)的中醫(yī)體質(zhì)辨識(shí)研究.pdf
- 基于Elman神經(jīng)網(wǎng)絡(luò)的換熱器系統(tǒng)動(dòng)態(tài)辨識(shí).pdf
- 基于模糊神經(jīng)網(wǎng)絡(luò)的橋梁狀態(tài)評(píng)價(jià).pdf
評(píng)論
0/150
提交評(píng)論