版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、鞍點(diǎn)型線性代數(shù)方程組的數(shù)值求解是科學(xué)計(jì)算領(lǐng)域的熱門研究方向,有重要的理論意義和應(yīng)用價(jià)值.比如,工程領(lǐng)域里的混合有限元方法就是鞍點(diǎn)問題的一個(gè)主要來源.因?yàn)榘包c(diǎn)問題的不定性及較差的譜性質(zhì),構(gòu)造該問題的高效數(shù)值求解方法有很大的困難和挑戰(zhàn)性. 虛擬區(qū)域分解法是求解微分方程數(shù)值解的一類有效方法,它首先將定義在不規(guī)則區(qū)域上的原問題表示為定義在覆蓋原區(qū)域的規(guī)則區(qū)域上的等價(jià)問題,然后用混合有限元方法離散化,導(dǎo)出相應(yīng)的鞍點(diǎn)型方程組.因此,對這類方
2、程組提供快速高效的數(shù)值求解方法是提高虛擬區(qū)域分解法的總體計(jì)算效率的關(guān)鍵之一. 本文以變系數(shù)二階橢圓型方程的虛擬區(qū)域分解法為模型,深入研究了求解相應(yīng)的線性代數(shù)方程組的多種迭代方法的計(jì)算效果.求解方祛包括參數(shù)化非精確uzawa算法(Parameterized Inexact uzawamethod)(記為PIU),預(yù)處理uzawa算法(Preconditioned Uzawamethod),Uzawa算法,GMREs方法(Gener
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 第二章 非線性代數(shù)方程組的解法
- 與PDE數(shù)值解相關(guān)的線性代數(shù)方程組求解.pdf
- 非線性代數(shù)方程組理論引入高等代數(shù)課程研究.pdf
- 非線性代數(shù)方程組與幾何約束問題求解.pdf
- 非線性方程組奇異問題的數(shù)值解法.pdf
- 計(jì)算機(jī)課程設(shè)計(jì)---求線性代數(shù)方程組的解
- 解線性代數(shù)方程組直接法的matlab gui設(shè)計(jì)[畢業(yè)論文]
- 解線性代數(shù)方程組迭代法的matlab gui設(shè)計(jì)[開題報(bào)告]
- 非線性方程組迭代解法
- 解線性代數(shù)方程組迭代法的matlab gui設(shè)計(jì)[文獻(xiàn)綜述]
- 8線性方程組的迭代解法
- 非線性互補(bǔ)問題的光滑方程組解法.pdf
- 大型線性方程組的迭代解法.pdf
- 病態(tài)線性方程組解法研究.pdf
- 纏繞方程組的解法.pdf
- 解線性代數(shù)方程組迭代法的matlab gui設(shè)計(jì)[畢業(yè)論文]
- 若干特殊方程組的數(shù)值解法及其應(yīng)用.pdf
- 非線性代數(shù)方程組求解的布谷鳥算法及其改進(jìn)算法研究.pdf
- 線性方程組解法的研究【開題報(bào)告】
- 線性方程組解法的研究【文獻(xiàn)綜述】
評論
0/150
提交評論