已閱讀1頁,還剩35頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、近些年來,由于自仿鑲嵌集(self-affine sets)在分形幾何、小波理論及Fuglede譜集問題上扮演重要角色,從而人們對它的研究表現(xiàn)出極大的興趣和熱情.盡管如此,自仿鑲嵌集的一些重要拓撲性質(zhì),如連通性和擬圓性,還未得到深刻的認識.這方面的研究也大都局限于某些特殊類型的自仿集或自仿鑲嵌集.本文主要考慮幾類自仿集的連通性,一類是數(shù)字集位于矩形中的自仿集,另一類是數(shù)字集位于平行四邊形中的自仿集.我們給出了判定這些自仿集連通的充要條件
2、或充分條件.本文的前二章介紹了分形的一些基本知識和有關(guān)分形連通性的一些現(xiàn)有結(jié)論,本文核心在第三章和第四章.
第三章主要研究了由矩陣A=(p0-aq)和數(shù)字集D={(ci,dj)T:ci∈D1,dj∈D2}所生成的自仿集的連通性,并給出了充分條件.其中p,q∈Z,3≤|p|+1≤|q|<2|p|-1且D1={0,s,…(|q|-1)s},D2={0,t,…(|p|-1)t},s,t≠0.
第四章研究了由矩陣A=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 平面自仿集的連通性及其鋪磚數(shù)字集.pdf
- 12931.一類自仿集的連通性及其自仿測度的譜性研究
- 24264.圖的邊連通性與點連通性研究
- 33587.集值優(yōu)化問題解集的連通性研究
- 有向圖和圖的邊連通性與點連通性.pdf
- 有向圖和定向圖的邊連通性和點連通性研究.pdf
- 連通圖群連通性的度條件.pdf
- 網(wǎng)絡(luò)的連通性和診斷.pdf
- 關(guān)于圖的邊連通性.pdf
- 2022年全球連通性報告
- 無線Ad Hoc網(wǎng)絡(luò)連通性的研究.pdf
- 連通性、鄰域、路和圈.pdf
- 圖的高階限制邊連通性.pdf
- 交通系統(tǒng)震后連通性研究.pdf
- 無線Ad Hoc網(wǎng)絡(luò)連通性研究.pdf
- L-拓撲空間的局部仿緊性及δ-連通性.pdf
- 維護森林連通性動態(tài)樹
- 2022年全球連通性報告
- 無線Ad Hoc網(wǎng)絡(luò)的連通性研究.pdf
- 連通性、領(lǐng)域、路和圈.pdf
評論
0/150
提交評論