版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、The problem on optimization of approximate solution of operator equations is mainly to determine the exact orders of error and complexity of algorithms,and construct the optimal algorithm realizing the orders.Complexity
2、of operations is also called the cost of operation.Therefore,the problem of the ε-complexity of approximate solution of operator equations,roughing speaking,is the minimal cost among all algorithms which solve the proble
3、m with error at most ε,and it has widely practical backgrounds.Generally speaking,the optimization of a problem can be done in various setting,such as worst case setting,average case setting,probability case setting.The
4、worst case setting is in common use,but the others are also of interest.To now,as far as the optimization of approximate solution of operator equations is concerned,many works have been done in the worst case setting.In
5、the average case setting,however,the result about this problem has hardly ever been seen.In Chapter 1 we have considered the problem of optimization of approximate solution of integral equations of several variables in w
6、orst case.We determine the exact error order and construct the optimal error algorithm.In Chapter 2 The problem of ε-complexity of integral equations have been considered in worst case.We determine the exact order of the
7、 complexity and construct the optimal algorithm realizing the order.In Chapter 3 we have considered the problem of the optimization of approximate solution of operator equations in the average case and its application.To
8、 solve above mentioned problems we have used the classical methods and skills in approximate theory,especially the profound results on width and approximate by Fourier sum.Moreover,some new ideas and skills in modern app
9、roximate theory have also played very important roles.Generally speaking,to synthesize traditional methods and modern mathematical idea and methods in functional analysis,linear algebra,probabilistic theory may provide n
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 多產(chǎn)品選址問(wèn)題的計(jì)算復(fù)雜性與近似算法.pdf
- Dullin-Gottwald-Holm方程解算子的圖靈可計(jì)算性和計(jì)算復(fù)雜性.pdf
- 演化算法的計(jì)算復(fù)雜性研究.pdf
- 計(jì)算復(fù)雜性與智能算法
- 非經(jīng)典計(jì)算模型及其計(jì)算復(fù)雜性研究.pdf
- 低計(jì)算復(fù)雜性視編碼算法的研究.pdf
- 最大可解線性網(wǎng)絡(luò)編碼的計(jì)算復(fù)雜性與構(gòu)造方法.pdf
- Fuzzy關(guān)系的分解及其計(jì)算復(fù)雜性的研究.pdf
- 排序問(wèn)題的動(dòng)態(tài)規(guī)劃模型、算法和計(jì)算復(fù)雜性.pdf
- 箱覆蓋對(duì)策及其核心的算法和計(jì)算復(fù)雜性.pdf
- 基于e-范數(shù)的學(xué)習(xí)推廣能力與計(jì)算復(fù)雜性.pdf
- 概率纖維化模態(tài)邏輯的計(jì)算復(fù)雜性研究.pdf
- 近紅外耳穴信號(hào)特征有效性與計(jì)算復(fù)雜性的研究.pdf
- 一類分裝式排序問(wèn)題的計(jì)算方法和計(jì)算復(fù)雜性研究.pdf
- 數(shù)據(jù)一致性的計(jì)算復(fù)雜性理論和算法研究.pdf
- 給定物品組合情況下組合分配問(wèn)題計(jì)算復(fù)雜性研究.pdf
- 復(fù)雜性、復(fù)雜系統(tǒng)與復(fù)雜性科學(xué)
- 微分方程解析近似解的符號(hào)計(jì)算研究.pdf
- 多色點(diǎn)集直線劃分的復(fù)雜性及其近似算法.pdf
- 復(fù)雜性肛瘺
評(píng)論
0/150
提交評(píng)論