版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、畢業(yè)論文 畢業(yè)論文(設(shè)計(jì) 設(shè)計(jì))題 目: 熱傳導(dǎo)方程初邊值問(wèn)題的差分解法 熱傳導(dǎo)方程初邊值問(wèn)題的差分解法 院 ( 系 ): 數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院 數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院 _ 專業(yè)年級(jí) 專業(yè)年級(jí): 2008 2008 級(jí)數(shù)學(xué)與應(yīng)用數(shù)學(xué)系 級(jí)數(shù)學(xué)與應(yīng)用數(shù)學(xué)系 姓 名: XXX XXX __ __ _ 學(xué) 號(hào): 200808101134 200808101134 __ __
2、 _ 指導(dǎo)教師 指導(dǎo)教師: XXX______ XXX______ _ 2012 年 5 月AbstractThe article aims to explore the heat conduction equation initial boundary value problem of the finite difference method.This paper includes the following t
3、wo parts of the main content:The first part is compared with the traditional heat conduction equation initial boundary value problem of the separation of variables method finite difference method;The second part is the h
4、eat conduction equation initial boundary value problem of difference methods for specific examples.Which mainly relates to a method for heat conduction equation initial boundary value problem of the separation of variabl
5、es method and finite difference method. It first introduces the finite difference method. The basic idea is to use a continuous solution region using finite discrete points constitute a grid to replace, the discrete poi
6、nts are called grid node; the continuous solution of continuous variable function is used in the grid defined on a discrete variables function to approximate; the original equations and boundary conditions of the differe
7、nce quotient to micro commercial approximation, integral integral and to approximate, and the differential equations and boundary conditions is approximately replaced by algebraic equations, finite difference equation,
8、the solution to this equation can get the original problem in the discrete points on the approximate solution. And then using interpolation methods can be determined from the discrete solution solution of the approxima
9、te solution on the entire region. In the use of numerical methods for solving partial differential equations, if every derivative by finite difference approximation formula substitution, the solution of partial d
10、ifferential equations of the problem is transformed into solving algebraic equations, the so-called finite difference method.Finite difference method for solving partial differential equations:1discrete regions, w
11、hich are for solving partial differential equations by the finite region is subdivided into a lattice grid consisting of; 2approximate substitution, i.e. finite difference formula one substitution per lattice points of
12、 the derivative;3approximation solution. In other words, this process can be viewed as a polynomial interpolation and its differential instead of partial differential equation solution process. In contrast with the meth
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 半線性雙溫度熱傳導(dǎo)方程的初邊值問(wèn)題.pdf
- 利用算子半群理論看熱傳導(dǎo)方程初邊值問(wèn)題解的存在性
- 30261.利用高階修正型方程逼近熱傳導(dǎo)方程側(cè)邊值問(wèn)題
- 關(guān)于壓差方程初邊值問(wèn)題解的研究.pdf
- 非經(jīng)典熱傳導(dǎo)問(wèn)題的解法研究.pdf
- 熱傳導(dǎo)方程N(yùn)eumann邊界值問(wèn)題的緊差分格式.pdf
- 對(duì)流擴(kuò)散方程的差分解法.pdf
- 信息與計(jì)算科學(xué)畢業(yè)論文熱傳導(dǎo)方程差分格式的收斂性和穩(wěn)定性
- 分?jǐn)?shù)階微分方程與差分方程初邊值問(wèn)題的解.pdf
- 工業(yè)數(shù)學(xué)中關(guān)于熱傳導(dǎo)方程應(yīng)用的若干反問(wèn)題及其數(shù)值解法.pdf
- 熱傳導(dǎo)方程參數(shù)識(shí)別問(wèn)題.pdf
- 熱傳導(dǎo)方程中的若干反問(wèn)題.pdf
- 熱傳導(dǎo)方程的尋源反問(wèn)題.pdf
- 熱傳導(dǎo)方程反問(wèn)題的參數(shù)確定.pdf
- 薄體結(jié)構(gòu)熱傳導(dǎo)問(wèn)題的邊界元解法.pdf
- 21714.分?jǐn)?shù)階熱傳導(dǎo)側(cè)邊值問(wèn)題的正則化
- 矩陣方程的數(shù)值解法[畢業(yè)論文]
- 廣義Burges方程的初邊值問(wèn)題.pdf
- 求解熱傳導(dǎo)方程的高精度隱式差分格式
- 26989.熱傳導(dǎo)方程的顯式差分gmls算法研究
評(píng)論
0/150
提交評(píng)論