版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
1、南京航空航天大學碩士學位論文R上非標準增長橢圓系統(tǒng)解的存在性和多重性姓名:徐先春申請學位級別:碩士專業(yè):應用數(shù)學指導教師:安玉坤20070301南京航空航天大學碩士學位論文 iiAbstract In this paper, we main study the existence and the multiplicity of solutions for elliptic systems with nonstandard growth
2、condition in N R . This paper is based on the basic knowledge of the generalized Orlicz space and the generalized Orlicz-Sobolev space. With the studying of the form of Euler-Lagrange functional corresponding to the elli
3、ptic systems and it’s properties of weak-strong continuity, ( ) S+ , PS-compactness, Mountain-Pass geometry, etc., we managed to apply the Mountain-Pass Lemma in Critical Point Theory to prove the existence of solutions
4、for elliptic systems with nonstandard growth condition in N R , under “sublinear” and “superlinear” conditions. By the Genus Theory and Fountain Theorem, we respectively prove the multiplicity of the solutions for ellip
5、tic systems with nonstandard growth condition in N R under “sublinear” and “superlinear” conditions. This paper contains five sections. In section one, we introduced the problem we are going to study and the present re
6、searching situation abroad. In section two, we present some necessary preliminaries about the generalized Orlicz space and the generalized Orlicz-Sobolev space. In section three, we first present the Euler-Lagrange funct
7、ional corresponding to the elliptic systems that are studied in this paper, and its properties. Secondly, we prove the lemmas that will be used in proof of the following theorems and give the remark 3.1 that is very impo
8、rtant in this paper. In section four, through the Mountain-Pass Theorem in Critical Point Theory, we respectively prove the existence of solution for elliptic systems with nonstandard growth condition in N R , under “sub
9、linear” and “superlinear” conditions. In the last part of this paper, by the Genus Theory and Fountain Theorem, we respectively prove the multiplicity of the solution for elliptic systems with nonstandard growth conditio
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- r39;n上pxlaplace方程解的存在性
- r39;n上某些非線性橢圓偏微分方程的多重變號解
- 非合作橢圓系統(tǒng)解的存在性和多重性.pdf
- 具非標準增長條件的四階橢圓方程弱解存在性與多解性.pdf
- 四階橢圓方程和系統(tǒng)解的存在性和多重性.pdf
- 幾類非線性橢圓方程解的存在性和多重性.pdf
- 超線性橢圓方程解的存在性及多重性.pdf
- 兩類半線性橢圓方程解的存在性和多重性.pdf
- 具有非線性邊界條件的橢圓方程解的存在性和多重性.pdf
- 20372.熱方程和kleingordonmaxwell系統(tǒng)解的存在性和多重性
- 幾類橢圓邊值問題正解的存在性和多重性.pdf
- 具臨界指數(shù)的橢圓方程解的存在性與多重性.pdf
- 凹凸非線性橢圓方程正解的存在性和多重性.pdf
- 一類半線性橢圓方程解的存在性與多重性.pdf
- 非線性橢圓方程與方程組解的存在性及多重性.pdf
- 幾類具有跳躍非線性項的橢圓型方程解的存在性和多重性.pdf
- 一類臨界擬線性橢圓型方程解的存在性和多重性.pdf
- 具有Hardy項和Hardy-Sobolev臨界指數(shù)橢圓方程解的存在性和多重性.pdf
- 20371.幾類hamilton系統(tǒng)與橢圓邊值問題解的存在性和多重性
- 非線性Schr_dinger-Poisson系統(tǒng)解的存在性和多重性.pdf
評論
0/150
提交評論