畢業(yè)論文外文翻譯-電力在線監(jiān)測與診斷配電系統(tǒng)_第1頁
已閱讀1頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、EnergyPowerEngineering20124529538:dx.doi.g10.4236epe.2012.46066PublishedOnlineNovember2012(:www.SciRP.gjournalepe)OnlineDiagnosisMonitingfPowerDistributionSystemAtefAlmashaqbehAoudaArfoaElectricalEngineeringDepartmentTaf

2、ilaTechnicalUniversityTafilaJdanEmail:dr.atef_almashakbeh@ReceivedOctober162012revisedNovember142012acceptedNovember262012ABSTRACTRecentlypowerdistributionsystemisgettinglargermecomplex.Itisverydifficultevenftheexpertsto

3、diagnosismonitingtomadebestaction.Thismotivatedmanyresearcherstoinvestigatepowersystemsineffttoimprovereliabilitybyfocusingonfaultdetectionclassification.Therehavebeenmanystudiesonproblemsbuttheresultsarenotgoodenoughfap

4、plyingtorealpowersystem.Inthispaperanewprotectiverelayingframewktodiagnosismonitingfaultsinanelectricalpowerdistributionsystemwith.Thiswkwillextractfaultsignaturesbyusingellipsefitusingleastsquarescriterionduringfaultcon

5、dition.ByutilizingprincipalcomponentanalysismethodsthissystemwillidentifyclassifylocalizeanyfaultinstantaneouslyKeywds:FaultDetectionClassificationProtectiveRelayingPCAPSCAD1.IntroductionFaultdetectionisafocalpointinther

6、esearchofpowersystemsareasincetheestablishmentofelectricitytransmissiondistributionsystems.Theobjectivesofapowersystemfaultanalysisistoprovideenoughinfmationtounderstthereasonsthatleadtoaninterruptiontoassoonaspossiblere

7、stethehoverofpowerperhapsminimizefutureoccurrencesifpossibleatall[1].SeveraltechniquesareadoptedfpatternrecognitionofgeneratingthehighfrequencysignalsArtificialNeuralwk(ANN)Waveletsamongotherpowerfulpatternrecognitioncla

8、ssificationtools.ANNbasedalgithmsdependonidentifyingthedifferentpatternsofsystemvariablesusingimpedanceinfmationANNisthattheresolutionisnotefficientsinceitcanbeaverysparsewkwiththeneedflargesizetrainingdataaddinganadditi

9、onalburdenonitscomputationalcomplexity[24].Waveletstransfmisadoptedtodiscriminatethefaultstypefromthemagizinginrushcurrent[5].OthersincpatedwavelettransfmwithothermethodssuchasProbabilisticNeuralwk(PNN)adaptiveresonancet

10、heyadaptiveneuralfuzzyinferencesystemsupptvectmachines[610].FuzzylogicwasalsocombinedwithdiscreteFouriertransfmadaptiveresonancetheyprinciplesofestimationindependentcomponentanalysistoenhanceperfmance[9].Unftunatelymosto

11、ftheavailabletoolsffaultdetectionclassificationarenotefficientarenotinvestigatedfrealtimeimplementationthereisaneedfnewalgithmsextractiondatareductioninlargedatasets[9].TypicallyPCAisutilizedistoreducethedimensionalityof

12、adatasetinwhichthereisalargenumberofinterrelatedvariableswhilethecurrentvariationinthedatasetismaintainedasmuchaspossible[9].Theprincipalcomponents(PCs)arecalculatedusingthecovariancematrixafterasimplenmalizationprocedur

13、e.AfterellipsefittingweapplythePCAusingfollowingsteps:Step1:GetdatafromfittingellipseStep2:SubtractthemeanStep3:CalculatethecovariancematrixStep4:CalculatetheeigenvectseigenvaluesoftencovarianceMatrixStep5:Choosingcompon

14、entsfmingafeaturevect.InfactitturnsoutthattheeigenvectwiththehighesteigenvalueistheprinciplecomponentofthedatainFigure2afterapplyingPCAinfittedellipseduringfaultconditiontheeigenvectwiththelargeseigenvaluewastheonethatpo

15、inteddownthedleofthedata.Itisthemostsignificantrelationshipbetweenthedatadimensions..WenotetheangleofprincipalcomponentwillbeauniquedistinguishedasshowninFigure3.Theclassificationprocessofafaultisdividedintotwostagesthef

16、irstistheprefaultprocedureusingallsignaturesgeneratedpritotestingtoenfcetheirprojectionsontotheprincipalcomponentsspacecalculatedtheprinciplecomponenthealthyangle(PCHA).Thesecondstagesisthetestingprocessduringfaultcondit

17、ionarefollowedtoprojectthetestpatternontoPCAspacefollowedbymeasuringofthePrinciplecomponentfaultangle(PCFA).Thisminimumdistancewillidentifyamatchofapatterntoafaultnofaultatall.Thismethodusesonlycurrentvoltagesignalsmeasu

18、redbyrelayagentsateachbusofthewksectionstoidentifythetypeoffaultifitisathreelinestoground(3LG)singlelinetoground(LG)doublelinetoground(DLG)alinetoline(LL)fault.Italsodeterminesthephasesincludedinfaultthebuslineatwhichthe

19、faultoccurred.Ananalysisofallpossibletypesoffaultinthreephasesystemi.e.LGfaults(AGBGCG)LLfaults(ABBCCA)DLGfaults(ABGBCGCAG)3LGfaults(ABCG)iscarriedout.Inthispapertheproposedalgorithmdeterminesthetypeoffaultfirstfinallyit

20、determinesthefaultlocation.ToidentifythefaulttypewenotethePCFAwithlessthancomparingwithPCHAfexampleifwehaveFaultAGwenotePCFAfphasealessthanPCHAfphaseaPCFAfphasebcarethesameasPCHAfphasebcalsoffaultACGthePCFAfphaseaclessth

21、anPCHAfphaseacbutPCFAfphasebisthesameofPCHAfphasebalsoflowimpedancefaultthedifferencebetweenPCFAPCHAisveryhighwillincreasedgraduallyatfaultedbusesthenwillbeincreasedafterfaultedbusesbutinhighimpedancefaultthedifferencebe

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論