2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩11頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、同圖像灰度不同,邊界處一般會有明顯的邊緣,利用此特征可以分割圖像。需要說明的是:邊緣和物體間的邊界并不等同,邊緣指的是圖像中像素的值有突變的地方,而物體間的邊界指的是現(xiàn)實場景中的存在于物體之間的邊界。有可能有邊緣的地方并非邊界,也有可能邊界的地方并無邊緣,因為現(xiàn)實世界中的物體是三維的,而圖像只具有二維信息,從三維到二維的投影成像不可避免的會丟失一部分信息;另外,成像過程中的光照和噪聲也是不可避免的重要因素。正是因為這些原因,基于邊緣的圖

2、像分割仍然是當(dāng)前圖像研究中的世界級難題,目前研究者正在試圖在邊緣提取中加入高層的語義信息。在實際的圖像分割中,往往只用到一階和二階導(dǎo)數(shù),雖然,原理上,可以用更高階的導(dǎo)數(shù),但是,因為噪聲的影響,在純粹二階的導(dǎo)數(shù)操作中就會出現(xiàn)對噪聲的敏感現(xiàn)象,三階以上的導(dǎo)數(shù)信息往往失去了應(yīng)用價值。二階導(dǎo)數(shù)還可以說明灰度突變的類型。在有些情況下,如灰度變化均勻的圖像,只利用一階導(dǎo)數(shù)可能找不到邊界,此時二階導(dǎo)數(shù)就能提供很有用的信息。二階導(dǎo)數(shù)對噪聲也比較敏感,解

3、決的方法是先對圖像進(jìn)行平滑濾波,消除部分噪聲,再進(jìn)行邊緣檢測。不過,利用二階導(dǎo)數(shù)信息的算法是基于過零檢測的,因此得到的邊緣點(diǎn)數(shù)比較少,有利于后繼的處理和識別工作。各種算子的存在就是對這種導(dǎo)數(shù)分割原理進(jìn)行的實例化計算,是為了在計算過程中直接使用的一種計算單位;Roberts算子:邊緣定位準(zhǔn),但是對噪聲敏感。適用于邊緣明顯且噪聲較少的圖像分割。Roberts邊緣檢測算子是一種利用局部差分算子尋找邊緣的算子Robert算子圖像處理后結(jié)果邊緣不

4、是很平滑。經(jīng)分析,由于Robert算子通常會在圖像邊緣附近的區(qū)域內(nèi)產(chǎn)生較寬的響應(yīng),故采用上述算子檢測的邊緣圖像常需做細(xì)化處理,邊緣定位的精度不是很高。Prewitt算子:對噪聲有抑制作用,抑制噪聲的原理是通過像素平均,但是像素平均相當(dāng)于對圖像的低通濾波,所以Prewitt算子對邊緣的定位不如Roberts算子。Sobel算子:Sobel算子和Prewitt算子都是加權(quán)平均,但是Sobel算子認(rèn)為,鄰域的像素對當(dāng)前像素產(chǎn)生的影響不是等價的

5、,所以距離不同的像素具有不同的權(quán)值,對算子結(jié)果產(chǎn)生的影響也不同。一般來說,距離越遠(yuǎn),產(chǎn)生的影響越小。IsotropicSobel算子:加權(quán)平均算子,權(quán)值反比于鄰點(diǎn)與中心點(diǎn)的距離,當(dāng)沿不同方向檢測邊緣時梯度幅度一致,就是通常所說的各向同性。在邊沿檢測中,常用的一種模板是Sobel算子。Sobel算子有兩個,一個是檢測水平邊沿的;另一個是檢測垂直平邊沿的。Sobel算子另一種形式是各向同性Sobel(IsotropicSobel)算子,也有

6、兩個,一個是檢測水平邊沿的,另一個是檢測垂直平邊沿的。各向同性Sobel算子和普通Sobel算子相比,它的位置加權(quán)系數(shù)更為準(zhǔn)確,在檢測不同方向的邊沿時梯度的幅度一致。由于建筑物圖像的特殊性,我們可以發(fā)現(xiàn),處理該類型圖像輪廓時,并不需要對梯度方向進(jìn)行運(yùn)算,所以程序并沒有給出各向同性Sobel算子的處理方法。由于Sobel算子是濾波算子的形式,用于提取邊緣,可以利用快速卷積函數(shù),簡單有效,因此應(yīng)用廣泛。美中不足的是,Sobel算子并沒有將圖

7、像的主體與背景嚴(yán)格地區(qū)分開來,換言之就是Sobel算子沒有基于圖像灰度進(jìn)行處理,由于Sobel算子沒有嚴(yán)格地模擬人的視覺生理特征,所以提取的圖像輪廓有時并不能令人滿意。在觀測一幅圖像的時候,我們往往首先注意的是圖像與背景不同的部分,正是這個部分將主體突出顯示,基于該理論,我們可以給出閾值化輪廓提取算法,該算法已在數(shù)學(xué)上證明當(dāng)像素點(diǎn)滿足正態(tài)分布時所求解是最優(yōu)的。處理過程中,Canny算子還將經(jīng)過一個非極大值抑制的過程,最后Canny算子還

8、采用兩個閾值來連接邊緣。下面算法是基于的算法不可能直接運(yùn)行,只是我把Canny的具體實現(xiàn)步驟寫了出來,若需用還要自己寫。該算子具體實現(xiàn)方法:anny.cpp:implementationoftheCannyclass.#include“anny.h“#include“math.h“#include“algithms.h“#include“algithm.h“#include“stdlib.h“#include“maths.h“using

9、namespacestdConstructionDestructionCanny::Canny(intPicHeightintPicWidthdoublePicDatadoublePicSigmadoublePicRatioLowdoublePicRatioHigh)iHeight=PicHeightiWidth=PicWidthiData=PicDatasigma=PicSigmadRatioLow=PicRatioLowdRatio

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論