2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩98頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、歷年考研數學一真題歷年考研數學一真題1987201719872017(答案(答案解析)解析)(經典珍藏版)最近三年(經典珍藏版)最近三年回顧過去回顧過去最近三年篇(最近三年篇(2015201720152017)20152015年全國碩士研究生入學統(tǒng)一考試年全國碩士研究生入學統(tǒng)一考試數學數學(一)試卷試卷一、選擇題1—8小題每小題4分,共32分1設函數在上連續(xù),其二階導數的圖形如右()fx()????()fx??圖所示,則曲線在的拐點個數

2、為()yfx?()????(A)0(B)1(C)2(D)3【詳解詳解】對于連續(xù)函數的曲線而言,拐點處的二階導數等于零或者不存在從圖上可以看出有兩個二階導數等于零的點,以及一個二階導數不存在的點但對于這三個點,左邊的二階導數等于零的點的兩側二階0x?導數都是正的,所以對應的點不是拐點而另外兩個點的兩側二階導數是異號的,對應的點才是拐點,所以應該選(C)2設是二階常系數非齊次線性微分方程21123()xxyexe???的一個特解,則xyay

3、byce??????(A)(B)321abc?????321abc????(C)(D)321abc????321abc???【詳解詳解】線性微分方程的特征方程為,由特解可知一20rarb???12r?定是特征方程的一個實根如果不是特征方程的實根,則對應于21r?的特解的形式應該為,其中應該是一個零次多()xfxce?()xQxe()Qx項式,即常數,與條件不符,所以也是特征方程的另外一個實根,這21r?樣由韋達定理可得,同時是原來213

4、212()ab????????xyxe?方程的一個解,代入可得應該選(A)1c??3若級數條件收斂,則依次為級1nna???33xx??數的11()nnnnax????(A)收斂點,收斂點(B)收斂點,發(fā)散點(C)發(fā)散點,收斂點(D)發(fā)散點,發(fā)散點【詳解詳解】注意條件級數條件收斂等價于冪級數在處條1nna???1nnnax???1x?件收斂,也就是這個冪級數的收斂為,即,所以111limnnnaa????的收斂半徑,絕對收斂域為,11(

5、)nnnnax????111lim()nnnnaRna??????02()【詳解詳解】,????132123100100001001010010QeeeeeeP??????????????????????????100001010TTQP????????????211TTTTfxAxyPAPyyy??????????????所以100100100210020010010011001101001001010101TTQAQPAP?????

6、????????????????????????????????????????????????????????????????故選擇(A)7若為任意兩個隨機事件,則()AB(A)(B)()()()PABPAPB?()()()PABPAPB?(C)(D)2()()()PAPBPAB??2()()()PAPBPAB??【詳解】所以()()()()PAPABPBPAB??故選擇(C)2()()()PAPBPAB??8設隨機變量不相關,且,則

7、XY213EXEYDX???()2(())EXXY???(A)(B)(C)(D)3?35?5【詳解詳解】222225(())()()()EXXYEXEXYEXDXEXEXEYEX??????????故應該選擇(D)二、填空題(本題共6小題,每小題4分,滿分24分.把答案填在題中橫線上)920ln(cos)limxxx??【詳解】200122ln(cos)tanlimlimxxxxxx??????10221sincosxxdxx?????

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論