外文翻譯--抗震設計的發(fā)展_第1頁
已閱讀1頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、<p><b>  附錄一:</b></p><p><b>  抗震設計的發(fā)展</b></p><p>  摘要: 1 抗震設計思路發(fā)展歷程;2 現代抗震設計思路;3 保證結構延性能力的抗震措施; 4 常用抗震分析方法</p><p>  關鍵詞: 結構設計 抗震</p><p>

2、;  1.抗震設計思路發(fā)展歷程</p><p>  隨著建筑結構抗震相關理論研究的不斷發(fā)展,結構抗震設計思路也經歷了一系列的變化。 最初,在未考慮結構彈性動力特征,也無詳細的地震作用記錄統(tǒng)計資料的條件下,經驗性的取一個地震水平作用(0.1 倍自重)用于結構設計。隨著地面運動記錄的不斷豐富,人們通過單自由度體系的彈性反應譜,第一次從宏觀上看到地震對彈性結構引起的反應隨結構周期和阻尼比變化的總體趨勢,揭示了結構在地震

3、地面運動的隨機激勵下的強迫振動動力特征。但同時也發(fā)現一個無法解釋的矛盾,當時規(guī)范所取的設計用地面運動加速度明顯小于按彈性反應譜得出的作用于結構上的地面運動加速度,這些結構大多數卻并未出現嚴重損壞和倒塌。后來隨著對結構非線性性能的不斷研究,人們發(fā)現設計結構時取的地震作用只是賦予結構一個基本屈服承載力,當發(fā)生更大地震時,結構將在一系列控制部位進入屈服后非彈性變形狀態(tài),并靠其屈服后的非彈性變形能力來經受地震作用。由此,也逐漸形成了使結構在一定

4、水平的地震作用下進入屈服,并達到足夠的屈服后非彈性變形狀態(tài)來耗散能量的現代抗震設計理論。 由以上可以看出,結構抗震設計思路經歷了從彈性到非線性,從基于經驗到基于非線性理論,從單純保證結構承載能力到</p><p>  2.現代抗震設計思路</p><p>  在當前抗震理論下形成的現代抗震設計思路,其主要內容是:</p><p>  (1) 合理選擇確定結構屈服水準

5、的地震作用。一般先以具有統(tǒng)計意義的地面峰值加速度作為該地區(qū)地震強弱標志值(即中震的),再以不同的R(地震力降低系數)得到不同的設計用地面運動加速度(即小震的)來進行結構的強度設計,從而確定了結構的屈服水準。</p><p>  (2) 制定有效的抗震措施使結構確實具備設計時采用的R所對應的延性能力。其中主要包括內力調整措施(強柱弱梁、強剪弱彎)和抗震構造措施。</p><p>  現代抗震

6、設計理念是基于對結構非彈性性能的研究上建立起來的,其核心是關系,關系主要指在不同滯回規(guī)律和地面運動特征下,結構的屈服水準與自振周期以及最大非彈性動力反應間的關系。其中R為彈塑性反應地震力降低系數,簡稱地震力降低系數;而為最大非彈性反應位移與屈服位移之比,稱為位移延性系數;T則為按彈性剛度求得的結構自振周期。</p><p>  在滯回曲線為理想彈塑性及彈性剛度始終不變的前提下,通過對不同周期,不同屈服水準的非彈性

7、單自由度體系做動力分析,得到了有關彈塑性反應下最大位移的規(guī)律:對T大于1.0秒的體系適用 “等位移法則”即非彈性反應下的最大位移總等于同一地面運動輸入下的彈性反應最大位移。對于T在0.12-0.5秒之間的結構,適用“等能量法則”即非彈性反應下的彈塑性變形能等于同一地震地面運動輸入下的彈性變形能。當“等能量原則”適用時,隨著R的增大,位移延性需求的增長速度比“等位移原則”下按與R相同的比例增長更快。由以上規(guī)律我們可以看出,如果以結構彈性反

8、應為準,把結構用來做承載能力設計的地震作用取的越低,即R越大,則結構在與彈性反應時相同的地震作用下達到的非彈性位移就越大,位移延性需求就越高。這意味著結構必須具有更高的塑性變形能力。規(guī)律初步揭示出不同彈性周期的結構,當其彈塑性屈服水準取值大小不同時,在同一地面運動輸入下屈服水準與所達到的最大非彈性位移之間的關系。也揭示出了延性能力和塑性耗能能力是屈服水準不高的結構在較大地震引起的非彈性動力反應中不致發(fā)生嚴重損壞和倒塌的主要原因。讓人們認

9、識到延性在抗震設計中的重要性。</p><p>  之所以存在上訴的規(guī)律,我們應該注意到鋼筋混凝土結構的一些相關特性。首先,通過人為措施可以使結構具有一定的延性,即結構在外部作用下,可以發(fā)生足夠的非線性變形,而又維持承載力的屬性。這樣就可以保證結構在進入較大非線性變形時,不會出現因強度急劇下降而導致的嚴重破壞和倒塌,從而使結構在非線性變形狀態(tài)下耗能成為可能。其次,作為非線彈性材料的鋼筋混凝土結構,在一定的外力作用

10、下,結構將從彈性進入非彈性狀態(tài)。在非彈性變形過程中,外力做功全部變?yōu)闊崮?,并傳入空氣中耗散掉。我們可以進一步以單質點體系的無阻尼振動來分析,在彈性范圍振動時,慣性力與彈性恢復力總處于動態(tài)平衡狀態(tài),體系能量在動能、勢能間不停轉換,但總量保持不變。如果某次振動過大,體系進入屈服后狀態(tài),則體系在平衡位置的動能將在最大位移處轉化為彈性勢能和塑性變形能兩部分,其中,塑性變性能將耗散掉,從而減小了體系總的能量。由此我們可以想到,在地震往復作用下,結

11、構在振動過程中,如果進入屈服后狀態(tài),將通過塑性變性能耗散掉部分地震輸給結構的累積能量,從而減小地震反應。同時,實際結構存在的阻尼也會進一步耗散能量,減小地震反應。此外,結構進入非彈性狀態(tài)后,其側向</p><p>  隨著對規(guī)律認識的深入,這一規(guī)律已被各國規(guī)范所接受。在抗震設計時,對在同一烈度區(qū)的同一類結構,可以根據情況取用不同的R,也就是不同的用于強度設計的地震作用。當R取值較大,即用于設計的地震作用較小時,對

12、結構的延性要求就越嚴;反之,當R取值較小,即用于設計的地震作用較大時,對結構的延性要求就可放松。</p><p>  目前,逐步形成了一套“多層次,多水準性態(tài)控制目標”的抗震理念。這一理念主要含義為:工程師應該選擇合適的形態(tài)水準和地震荷載進行結構設計。建筑物的性態(tài)是由結構的性態(tài),非結構構件和體系的性態(tài)以及建筑物內容物性態(tài)的組合。目前性態(tài)水準一般分為:損傷出現、正常運作、能繼續(xù)居住、可修復的、生命安全、倒塌。性態(tài)目

13、標指建筑物在一定程度的地震作用下對所期望的性態(tài)水準的表述。對建筑抗震設計應采用多重性態(tài)目標,對一般結構、必要結構、對安全起控制作用的結構分別建議了相應的性態(tài)目標――基本目標(常遇地震下完全正常運作,少遇地震下正常運作,罕遇地震下保證生命安全,極罕遇地震下接近倒塌)、必要目標(少于地震下完全正常運作,罕遇地震下正常運作,極罕遇地震下保證生命安全)、對安全其控制作用的目標(罕遇地震下完全正常運作,極罕遇地震下正常運作)。對重要性不同的建筑,

14、如協(xié)助進行災害恢復行動的醫(yī)院等建筑,應該按較高的性態(tài)目標設計,此外,也可以針對甲方對建筑提出的不同抗震要求,選擇不同的性態(tài)目標。</p><p>  3.保證結構延性能力的抗震措施</p><p>  合理選擇了結構的屈服水準和延性要求后,就需要通過抗震措施來保證結構確實具有所需的延性能力,從而保證結構在中震、大震下實現抗震設防目標。系統(tǒng)的抗震措施包括以下幾個方面內容:</p>

15、<p> ?。?)“強柱弱梁”:人為增大柱相對于梁的抗彎能力,使鋼筋混凝土框架在大震下,梁端塑性鉸出現較早,在達到最大非線性位移時塑性轉動較大;而柱端塑性鉸出現較晚,在達到最大非線性位移時塑性轉動較小,甚至根本不出現塑性鉸。從而保證框架具有一個較為穩(wěn)定的塑性耗能機構和較大的塑性耗能能力。</p><p> ?。?)“強剪弱彎”:剪切破壞基本上沒有延性,一旦某部位發(fā)生剪切破壞,該部位就將徹底退出結構抗

16、震能力,對于柱端的剪切破壞還可能導致結構的局部或整體倒塌。因此可以人為增大柱端、梁端、節(jié)點的組合剪力值,使結構能在大震下的交替非彈性變形中其任何構件都不會先發(fā)生剪切破壞。</p><p>  (3) 抗震構造措施:通過抗震構造措施來保證形成塑性鉸的部位具有足夠的塑性變形能力和塑性耗能能力,同時保證結構的整體性。</p><p>  這一系統(tǒng)的抗震措施理念已被世界各國所接受,但是對于耗能機構

17、卻出現了以新西蘭和美國為代表的兩種不完全相同的思路。首先,這兩種思路都是以優(yōu)先引導梁端出塑性鉸為前提。</p><p>  抗震研究者認為耗能機構宜采用符合塑性力學中的“理想梁鉸機構”,即梁端全部形成塑性鉸,同時底層柱底也都形成塑性鉸的“全結構塑性機構”。其具體做法是通過結構分析得到各構件組合內力值后,對梁端截面就按組合彎矩進行截面設計;而對除底層柱底以外的柱截面,則用人為增大了以后的組合彎矩和組合軸力進行設計;

18、對底層柱底截面則用增大幅度較小的組合彎矩和組合軸力進行截面設計。通過這一做法實現在大震下的較大塑性變形中,梁端塑性鉸形成的較為普遍,底層柱底塑性鉸出現遲于梁端塑性鉸,而其余所有的柱截面不出現塑性鉸,最終形成“理想梁鉸機構”。為此,這種方法就必須取足夠大的柱端彎矩增強系數。</p><p>  另一方則認為取的柱彎矩增強系數過大,根據經驗取了較小的柱彎矩增強系數,這一做法使結構在大震引起的非彈性變形過程中,梁端塑性

19、鉸形成較早,柱端塑性鉸形成的相對較遲,梁端塑性鉸形成的較普遍,柱端塑性鉸形成的相對少一些,從而形成“梁柱塑性鉸機構”。</p><p>  “理想梁鉸機構”抗震措施的好處在于“理想梁鉸機構”完全利用了延性和塑性耗能能力較好的梁端塑性鉸來實現框架延性和耗散地震能量,同時因為除底層柱底外的其它柱端不出現塑性鉸,也就不必再對這些柱端加更多的箍筋。但是這種思路過于受塑性力學形成理想機構概念的制約,總認為底層柱底應該形成塑

20、性鉸,這樣就對底層柱底提出了較嚴格的軸壓比要求,同時還要用足夠多的箍筋來使柱底截面具有所需的延性,此外,底層柱底如果延性不夠發(fā)生破壞很容易導致結構整體倒塌。這些不利因素使該方法喪失了很大的優(yōu)勢。</p><p>  因此不需要被塑性力學的機構概念所限制,只要能在大震下實現以下的塑性耗能機構,就能保證抗震設計的基本要求:</p><p>  (1) 以梁端塑性鉸耗能為主;</p>

21、<p>  (2) 不限制柱端塑性鉸出現(包括底層柱底),但是通過適當增強柱端抗彎能力的方法使它在大震下的塑性轉動離其塑性轉動能力有足夠裕量。</p><p>  (3) 同層各柱上下端不同時處于塑性變形狀態(tài)。</p><p>  我國的抗震措施中對耗能機構的考慮也基本遵循了這一思路,采用了“梁柱塑性鉸機構”模式。</p><p>  抗震設計中我們?yōu)?/p>

22、了避免沒有延性的剪切破壞的發(fā)生,采取了“強剪弱彎”的措施來處理構件受彎能力與受剪能力的關系問題。值得注意的是,與非抗震抗剪破壞相比,地震作用下的剪切破壞是不同的。以梁構件為例,在較大地震作用下,梁端形成交叉斜裂縫區(qū),該區(qū)混凝土受斜裂縫分割,形成若干個菱形塊體,而且破碎會隨著延性增長而加劇。由于交叉斜裂縫與塑性鉸區(qū)基本重合,垂直和斜裂縫寬度都會隨延性而增大??拐鹣赂鶕憾说氖芰μ卣?,正剪力總是大于負剪力,正剪力作用下的剪壓區(qū)一般位于梁下部

23、,但由于地震的往復作用,梁底的混凝土保護層可能已經剝落,從而削弱了混凝土剪壓區(qū)的抗剪能力;交叉斜裂縫寬度比非抗震情況大,以及斜裂縫反復開閉,混凝土破碎更嚴重,從而使斜裂縫界面中的骨料咬合效應退化;混凝土保護層剝落和裂縫的加寬又會使縱筋的銷栓作用有一定退化。可見,地震作用下,混凝土抗剪能力嚴重退化,但是試驗發(fā)現箍筋的抗剪能力仍可以維持。</p><p>  當地震作用越來越小時,梁端可能不出現雙向斜裂縫,而出現單向

24、斜裂縫,裂縫寬度發(fā)育也從大于非抗震情況到接近非抗震情況,抗剪環(huán)境越來越有利。此外,抗震抗剪要求結構構件應在大震下預計達到的非彈性變形狀態(tài)之前不發(fā)生剪切破壞。因為框架剪切破壞總是發(fā)生在梁端塑性鉸區(qū),這就不僅要求在梁端形成塑性鉸前不發(fā)生剪切破壞,而且抗剪能力還要維持到塑性鉸的塑性轉動達到大震所要求的程度,這就需要更多的箍筋。同時,在梁端塑性變形過程中作用剪力并沒有明顯增大,也進一步說明這里增加的箍筋不是用來增大抗剪強度,而是為了提高構件在發(fā)

25、生剪切破壞時所達的延性。</p><p>  綜上所述,與非抗震抗剪相比,抗震抗剪性能是不同的,其性能與剪力作用環(huán)境,塑性區(qū)延性要求大小有關。我們可以采取以下公式來考慮抗震抗剪的強度公式:</p><p>  其中為混凝土抗剪能力,為箍筋抗剪能力,為由于地震作用導致的混凝土抗剪能力下降的折減系數,且隨著剪力作用環(huán)境、延性要求而改變。我國的抗震抗剪強度公式也以上面公式為基礎的,但是為設計方便

26、,不同的烈度區(qū)取用了相同的公式,均取為0.6,與上面提到的混凝土抗剪能力隨地震作用變化而不同的規(guī)律不一致,較為粗略。</p><p>  延性對抗震來說是極其重要的一個性質,我們要想通過抗震措施來保證結構的延性,那么就必須清楚影響延性的因素。對于梁柱等構件,延性的影響因素最終可歸納為最根本的兩點:混凝土極限壓應變,破壞時的受壓區(qū)高度。影響延性的其他因素實質都是這兩個根本因素的延伸。如受拉鋼筋配筋率越大,混凝土受壓

27、區(qū)高度就越大,延性越差;受壓鋼筋越多,混凝土受壓區(qū)高度越小,延性越好;混凝土強度越高,受壓區(qū)高度越低,延性越好(但如果混凝土強度過高可能會減小混凝土極限壓應變從而降低延性);對柱子這類偏壓構件,軸壓力的存在會增大混凝土受壓區(qū)高度,減小延性;箍筋可以提高混凝土極限壓應變,從而提高延性,但對于高強度混凝土,受壓時,其橫向變形系數較一般混凝土明顯偏小,箍筋的約束作用不能充分發(fā)揮,所以對于高強度混凝土,不適于用加箍筋的方法來改善其延性。此外,箍

28、筋還有約束縱向鋼筋,避免其發(fā)生局部壓屈失穩(wěn),提高構件抗剪能力的作用,因此箍筋對提高結構抗震性能具有相當重要的作用。根據以上規(guī)律,在抗震設計中為保證結構的延性,常常采用以下措施:控制受拉鋼筋配筋率,保證一定數量受壓鋼筋,通過加箍筋保證縱筋不局部壓屈失穩(wěn)以及約束受壓混凝土,對柱子限制軸</p><p>  按地震作用降低系數(“中震”的地面運動加速度與“小震”的地面運動加速度之比)來劃分延性等級,“小震” 取值越高,

29、延性要求越低,“小震”取值越低,延性要求越高。對延性要求則并未按關系來取對應的,而是按抗震等級來劃分,抗震等級實質又主要是由烈度分區(qū)來決定的。這就導致同一個R對應了不同的,從而制定了不同的抗震措施,這與關系是不一致的。 另外,我國規(guī)定的“小震不壞,中震可修,大震不倒”的三水準抗震設防目標也存在一定的問題。該設防目標對甲類、乙類、丙類這三類重要性不同的建筑來說,并不都是恰當的。這種籠統(tǒng)的設防目標也不符合當今國際上的“多層次,多水準性態(tài)控制

30、目標”思想,這種多性態(tài)目標思想提倡在建筑抗震設計中應靈活采用多重性態(tài)目標。甲類建筑指重大建筑工程和地震時可能發(fā)生嚴重此生災害的建筑,乙類建筑指地震時使用不能中斷或需要盡快修復的建筑,由于不同類別建筑的不同重要性,不宜再籠統(tǒng)的使用以上同一個性態(tài)目標(設防目標),此外,還應該考慮建筑所有者的不同要求,選擇不同的設防目標,從而做到在性態(tài)目標的選擇上更加靈活。</p><p>  4. 常用抗震分析方法</p>

31、;<p>  伴隨著抗震理論的發(fā)展,各種抗震分析方法也不斷出現在研究和設計領域。</p><p>  在結構設計中,我們需要確定用來進行內力組合及截面設計的地震作用值。通常采用底部剪力法,振型分解反應譜法,彈性時程分析方法來計算該地震作用值,這三種方法都是彈性分析方法。其中,底部剪力法最簡便,適用于質量、剛度沿高度分布較均勻的結構。它的大致思路是通過估計結構的第一振型周期來確定地震影響系數,再結合結

32、構的重力荷載來確定總的水平地震作用,然后按一定方式分配至各層進行結構設計。對較復雜的結構體系則宜采用振型分解反應譜法進行抗震計算,它的思路是根據振型疊加原理,將多自由度體系化為一系列單自由度體系的疊加,將各種振型對應的地震作用、作用效應以一定方式疊加起來得到結構總的地震作用、作用效應。而對于特別不規(guī)則和特別重要的結構,常常需要進行彈性時程分析,該方法為直接動力分析方法。以上方法主要針對結構在地震作用下的彈性階段,保證結構具有一定的屈服水

33、準。</p><p>  對結構抗震性能進行分析是抗震研究的一項重要內容,非線性時程分析,非線性靜力分析是目前常用的幾種抗震分析方法。其中針對結構非線性反應的非線性時程分析法(非線性動力反應分析),從建立在層模型或單列梁柱模型上的方法到建立在截面多彈簧模型上的方法,再到目前正在研究發(fā)展的建立在截面纖維滯回本構規(guī)律的纖維模型法,模擬的準確程度正在不斷提高。其基本思路是通過一系列數值方法建立和求解動力方程從而得到結構

34、各個時刻的反應量。但由于對地震特點和結構特性所做的假設,其結果存在不確定性,其主要價值是用來考察地震作用下普遍的而非特定的反應規(guī)律,以及對抗震設計后的結構進行校核分析,評估其抗震性能。非線性靜力分析法是近年來得到廣泛應用的一種結構抗震能力評估的新方法。這種方法從本質上說是一種靜力非線性計算方法,但它將反應譜引入了計算過程和結果。其根本特征是用靜力荷載描述地震作用,在地震作用下考慮結構的彈塑性性質。它的基本原理和步驟是先以某種方法得到結構

35、在可能遭遇地震作用下所對應的目標位移,然后對結構施加豎向荷載的同時,將表征地震作用的一組水平靜力荷載以單調遞增的形式作用到結構上,在達到目標位移時停止荷載遞增,最后在荷載</p><p><b>  參考文獻</b></p><p>  1.豐定國、王清敏、錢國芳、蘇三慶編,工程結構抗震,地震出版社,20022.艾倫·威廉斯著,建筑與橋梁抗震設計,中國水利

36、水電出版社,20023.王社良、曹照平,框架結構彈塑性性能試驗研究,工程力學,1998:15(2)4.周錫元等,建筑結構的隔震、減震和振動控制,建筑結構學報,2002:25.周云、徐彤,耗能減震技術的回顧與展望,力學與實踐,2000:20</p><p><b>  附錄二:</b></p><p>  Earthquake resistance design

37、development</p><p>  Abstract: 1, earthquake resistance design mentality development course; 2, modern earthquake resistance design mentality; 3, guarantee structure ductility ability earthquake resistance m

38、easure; 4, commonly used earthquake resistance analysis method</p><p>  Key word: Structural design earthquake resistance</p><p>  1. Earthquake resistance design mentality development course<

39、;/p><p>  Along with the construction structure earthquake resistance correlation fundamental research unceasing development, the structure earthquake resistance design mentality has also experienced a series o

40、f changes. At first, in has not considered the structure elastic dynamic characteristic, also does not have the detailed earthquake function recording statistical data under the condition, the experience takes an earthqu

41、ake level function (0.1 time of dead weight) to use in the structural design. Is</p><p>  2. Modern earthquake resistance design mentality</p><p>  Modern earthquake resistance design mentality

42、 forms which under the current earthquake resistance theory, its main content is:</p><p>  (1) The reasonable choice determination structure submits the standard earthquake function. First by has the statist

43、ical significance the ground peak value acceleration to take generally this local earthquake strong and the weak symbolized the value (namely center shakes), then (seismic force step-down ratio) obtains the different des

44、ign by different R (namely slightly to shake) with the ground movement acceleration carries on the structure the intensity design, thus had determined the structure</p><p>  (2) Which formulates the effectiv

45、e earthquake resistance measure to cause the ductility ability which the structure truly has when design to use R corresponds. Mainly includes the endogenic force adjustment measure (strong column weak beam, strong cuts

46、weak is curved) and the earthquake resistance structure measure.</p><p>  The modern earthquake resistance design idea is based on establishes to the structure inelastic performance research in, its core is

47、the relations, the relations mainly refers differently is stagnating under the rule and the ground movement characteristic, the structure submits the standard and the self oscillation cycle as well as the biggest inelast

48、ic dynamic response relations. R is the ball plasticity responds the seismic force step-down ratio, the abbreviation seismic force step-down ratio;</p><p>  The reason that has the appeal the rule, we should

49、 note to reinforced concrete structure some related characteristics. First, may enable the structure through the artificial measure to have the certain ductility, namely the structure under exterior function, may have th

50、e enough non-linear distortion, but also maintains the supporting capacity the attribute. Like this may guarantee the structure when enters the big non-linear distortion, cannot appear because the intensity to drop the s

51、erious des</p><p>  Along with to rule understanding thorough, this rule has been accepted by the various countries' standard. When earthquake resistance design, to in the identical intensity area identi

52、cal kind of structure, may use different R according to the situation, also is different uses in the intensity design earthquake function. When R value big, namely uses in the earthquake function which designs comparing

53、the hour, is stricter to the structure ductility request; Otherwise, when R value small, when nam</p><p>  Should use the multiple condition goal to the construction earthquake resistance design, To the gene

54、ral structure, the essential structure, to were safe the control action the structure to suggest separately the corresponding condition goal - basic goal (often met under earthquake completely normally to operate, little

55、 met under earthquake normal operation, met under earthquake to guarantee rarely safety, met under earthquake close to collapse extremely rarely), the essential goal (is short unde</p><p>  3.Guarantees the

56、structure ductility ability the earthquake resistance measure</p><p>  After reasonably chose the structure to submit the standard and the ductility request, needed through the earthquake resistance measure

57、to guarantee the structure had the ductility ability truly which needed, thus the guarantee structure shook, under the big quake in the center realizes the earthquake resistance to garrison the goal. System earthquake re

58、sistance measure including following several aspects content:</p><p>  (1) "Strong column weak beam": Artificial increases the column to be opposite in beam's anti- curved ability, causes the r

59、einforced concrete frame under the big quake, the beam end plastic hinge appears early, in achieved when biggest non-linear displacement the plastic rotation is big; But the column end plastic hinge appears late, in achi

60、eved when biggest non-linear displacement the plastic rotation is small, even simply does not appear the plastic hinge. Thus the guarantee frame has a stabler</p><p>  (2) "Strong cuts weakly is curved&

61、quot;: The shearing failure basically does not have the ductility, once some spot has the shearing failure, this spot on thoroughly will withdraw from the structure earthquake resistance ability, also possibly will cause

62、 the structure regarding the column end shearing failure the part or the whole collapses. Therefore may artificial increase the column end, beam section, the pitch point combination shearing force value, enables the stru

63、cture the inelasticity to disto</p><p>  (3) Earthquake resistance structure measure: Through the earthquake resistance structure measure guaranteed forms the plastic hinge the spot to have the enough plasti

64、c deformation ability and the plasticity consumes energy the ability, at the same time guarantees the structure the integrity.</p><p>  This system earthquake resistance measure idea has been accepted by the

65、 various countries, but regarding consumed energy the organization to appear actually take New Zealand and US as representative's two kind of quite same not less than mentalities. First, these two kind of mentalities

66、 all are take first guide the beam end to leave the plastic hinge as the premises.</p><p>  Resists earthquakes the researcher to think consumes energy the organization suitably to use conforms to in the mec

67、hanics of plasticity "the ideal beam articulation organization", namely the beam end forms the plastic hinge completely, at the same time the first floor base of cylinder also all forms the plastic hinge "

68、the entire structure plastic organization". Its concrete procedure is obtains various components combination endogenic force value after the structure analysis, presses the combina</p><p>  Others thoug

69、ht takes column bending moment enhancement coefficient oversized, according to experienced has taken the small column bending moment enhancement coefficient, this procedure caused the structure in the inelastic distortio

70、n process which the big quake caused, the beam end plastic hinge formed early, the column end plastic hinge formed relatively late, the beam end plastic hinge formed is common, the column end plastic hinge formed relativ

71、ely few somewhat, thus formed "the beam column p</p><p>  "The ideal beam articulation organization" the earthquake resistance measure advantage lay in "the ideal beam articulation organi

72、zation" to use the ductility and the plasticity completely consumes energy the ability good beam end plastic hinge to realize the frame ductility and the diffusion earthquake energy, at the same time because did not

73、 appear the plastic hinge besides the first floor base of cylinder other column ends, also did not need again to these column end Canada more stirrups. But </p><p>  Therefore does not need to limit by the m

74、echanics of plasticity organization concept below, so long as can realize the plasticity under the big quake to consume energy the organization, can guarantee the earthquake resistance design the basic request:</p>

75、<p>  (1) Consumes energy by the beam end plastic hinge primarily.</p><p>  (2) Does not limit the column end plastic hinge to appear (including first floor base of cylinder), but enable it through th

76、e suitable enhancement column end anti- curved ability method to have the enough allowance under the big quake plastic rotation to its plastic rotation ability.</p><p>  (3) The end at the same time is not a

77、t the plastic deformation condition with the level various columns about.</p><p>  In our country's earthquake resistance measure to consumed energy the organization consideration also basically to follo

78、w this mentality, has used "the beam column plastic hinge organization" the pattern.</p><p>  In earthquake resistance design we in order to avoid not having the ductility shearing failure the occu

79、rrence, took "strong cut weakly is curved" the measure to process the component to bend the ability with to cut the ability the relational question. The worth noting is, with must resists earthquakes anti- cuts

80、 the destruction to compare, under the earthquake function shearing failure is different. Take the beam component as the example, under the big earthquake function, the beam end forms alt</p><p>  When the e

81、arthquake function more and more hour, the beam end possibly does not appear the double syncline crack, but appears the single syncline crack, the crack opening growth also from is bigger than the non- earthquake resista

82、nce situation to approach the non- earthquake resistance situation, anti- cuts the environment to be more and more advantageous. In addition, resists earthquakes anti- cuts the request structural unit to be supposed unde

83、r the big quake to estimate achieved in front of i</p><p>  In summary, with must resists earthquakes anti- cuts compares, resists earthquakes anti- cuts the performance is different, its performance and the

84、 shearing force function environment, the plastic area ductility request size concerns. Below we may adopt the formula to consider resists earthquakes anti- cuts the intensity formula.</p><p>  Anti- cuts th

85、e ability for the concrete, anti- cuts the ability for the stirrup, for because the earthquake function causes the concrete anti- cuts the reduction coefficient which the ability drops, also along with the shearing force

86、 function environment, the ductility request but changes. Our country's earthquake resistance shearing strength formula also take above formula as foundation, but for the design convenient, the different intensity ar

87、ea has used the same formula, takes is 0.6, mention</p><p>  The ductility to resists earthquakes said is an extremely important nature, we must want to guarantee the structure through the earthquake resista

88、nce measure the ductility, then must clearly affect the ductility factor. Regarding component and so on beam column, the ductility influence factor finally may induce into the most basic two points: Concrete limit pressu

89、re strain, time destruction compression zone altitude. The influence ductility other factors essence all is these two basic factors ex</p><p>  ("Center shakes" ground movement acceleration accordi

90、ng to the earthquake function step-down ratio with "slightly shakes" ratio of the ground movement acceleration) to divide the ductility rank, "slightly shakes" the value high, ductility request lower,

91、 "slightly shakes" the value lowly, the ductility request is higher. To ductility request then presses by no means relates takes the correspondence, but is divides according to the earthquake resistance rank, t

92、he earthquake resistance rank essence</p><p>  4. Commonly used earthquake resistance analysis method</p><p>  Is following the earthquake resistance theory development, each earthquake resistan

93、ce analysis method also unceasingly appears in the research and the design domain. In the structural design, we need to determine uses for to carry on the endogenic force combination and the section design earthquake vir

94、tual value. Usually uses the base shearing force law, inspires the decomposition reaction spectral method, the elastic time interval analysis method calculates this earthquake virtual value, these </p><p>  

95、Carries on the analysis to the structure earthquake resistance performance is resists earthquakes the research an important content, the non-linear time interval analysis, the non-linear static analysis is the present co

96、mmonly used several earthquake resistance analysis method.In which in view of the structure non-linearity response non-linear time interval analytic method (non-linear dynamic response analysis), from the establishment i

97、n the level model or on the single row beam column model met</p><p><b>  Reference</b></p><p>  1.Fengdingguo, Wangqingmin, Qianguofang, Susanqing, Engineering structure earthquake r

98、esistance, Earthquake Publishing house,2002</p><p>  2.Aylen?Williams, Construction and bridge earthquake resistance design, Chinese Water conservation Water and electricity Publishing house,2002</p>

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論