版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、(1)外文文獻(xiàn)原文RobustAnalysisofFeatureSpaces:ColImageSegmentationAbstractAgeneraltechniqueftherecoveryofsignificantimagefeaturesispresented.Thetechniqueisbasedonthemeanshiftalgithmasimplenonparametricprocedurefestimatingdensit
2、ygradients.Drawbacksofthecurrentmethods(includingrobustclustering)areavoided.Featurespaceofanynaturecanbeprocessedasanexamplecolimagesegmentationisdiscussed.Thesegmentationiscompletelyautonomousonlyitsclassischosenbytheu
3、ser.Thusthesameprogramcanproduceahighqualityedgeimageprovidebyextractingallthesignificantcolsapreprocessfcontentbasedquerysystems.A512512colimageisanalyzedin?lessthan10secondsonastardwkstation.Graylevelimagesarehledascol
4、imageshavingonlythelightnesscodinate.Keywds:robustpatternanalysislowlevelvisioncontentbasedindexing1IntroductionFeaturespaceanalysisisawidelyusedtoolfsolvinglowlevelimageunderstingtasks.Givenanimagefeaturevectsareextract
5、edfromlocalneighbhoodsmappedintothespacespannedbytheircomponents.Significantfeaturesintheimagethencrespondtohighdensityregionsinthisspace.Featurespaceanalysisistheprocedureofrecoveringthecentersofthehighdensityregionsi.e
6、.therepresentationsofthesignificantimagefeatures.HistogrambasedtechniquesHoughtransfmareexamplesoftheapproach.Whenthenumberofdistinctfeaturevectsislargethesizeofthefeaturespaceisreducedbygroupingnearbyvectsintoasinglecel
7、l.Adiscretizedfeaturespaceiscalledanaccumulat.Wheneverthesizeoftheaccumulatcellisnotadequatefthedataseriousartifactscanappear.TheproblemwasextensivelystudiedinthecontextoftheHoughtransfme.g..Thusfsatisfactyresultsafeatur
8、espaceshouldhavecontinuouscodinatesystem.Thecontentofacontinuousfeaturespacecanbemodeledasasamplefromamultivariatemultimodalprobabilitydistribution.Notethatfrealimagesthenumberofmodescanbeverylargeofthederoftens.searchin
9、gftheminimalvolumeellipsoidcontainingatleasthdatapoints.Themultivariatelocationestimateisthecenterofthisellipsoid.Toavoidcombinatialexplosionaprobabilisticsearchisemployed.Letthedimensionofthedatabep.Asmallnumberof(p1)tu
10、pleofpointsareromlychosen.Feach(p1)tuplethemeanvectcovariancematrixarecomputeddefininganellipsoid.TheellipsoidisinatedtoincludehpointstheonehavingtheminimumvolumeprovidestheMVEestimate.BasedonMVEarobustclusteringtechniqu
11、ewithapplicationsincomputervisionwasproposedin.Thedataisanalyzedunderseveralresolutions“byapplyingtheMVEestimatrepeatedlywithhvaluesrepresentingfixedpercentagesofthedatapoints.Thebestclusterthencrespondstothehvalueyieldi
12、ngthehighestdensityinsidetheminimumvolumeellipsoid.Theclusterisremovedfromthefeaturespacethewholeprocedureisrepeatedtillthespaceisnotempty.TherobustnessofMVEshouldensurethateachclusterisassociatedwithonlyonemodeoftheunde
13、rlyingdistribution.Thenumberofsignificantclustersisnotneededaprii.Therobustclusteringmethodwassuccessfullyemployedftheanalysisofalargevarietyoffeaturespacesbutwasfoundtobecomelessreliableoncethenumberofmodesexceededten.T
14、hisismainlyduetothenmalityassumptionembeddedintothemethod.Theellipsoiddefiningaclustercanbealsoviewedasthehighconfidenceregionofamultivariatenmaldistribution.ArbitraryfeaturespacesarenotmixturesofGaussiansconstrainingthe
15、shapeoftheremovedclusterstobeellipticalcanintroduceseriousartifacts.Theeffectoftheseartifactspropagatesasmemeclustersareremoved.Furthermetheestimatedcovariancematricesarenotreliablesincearebasedononlyp1points.Subsequentp
16、ostprocessingbasedonallthepointsdeclaredinlierscannotfullycompensatefaninitialerr.Tobeabletocrectlyrecoveralargenumberofsignificantfeaturestheproblemoffeaturespaceanalysismustbesolvedincontext.Inimageunderstingtaskstheda
17、tatobeanalyzediginatesintheimagedomain.Thatisthefeaturevectssatisfyadditionalspatialconstraints.Whiletheseconstraintsareindeedusedinthecurrenttechniquestheirroleismostlylimitedtocompensatingffeatureallocationerrsmadeduri
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯---特征空間穩(wěn)健性分析彩色圖像分割
- 外文翻譯---特征空間穩(wěn)健性分析彩色圖像分割
- 外文翻譯---特征空間穩(wěn)健性分析彩色圖像分割
- 外文翻譯---特征空間穩(wěn)健性分析:彩色圖像分割
- 外文翻譯---特征空間穩(wěn)健性分析彩色圖像分割 英文
- 外文翻譯---特征空間穩(wěn)健性分析:彩色圖像分割.docx
- 外文翻譯---特征空間穩(wěn)健性分析:彩色圖像分割.docx
- 外文翻譯---特征空間穩(wěn)健性分析:彩色圖像分割 英文.pdf
- 外文翻譯---特征空間穩(wěn)健性分析:彩色圖像分割 英文.pdf
- 圖像分割-畢業(yè)論文外文翻譯
- 彩色圖像快速分割方法研究【畢業(yè)論文】
- 彩色圖像分割技術(shù)研究畢業(yè)論文
- 畢業(yè)論文外文翻譯-圖像邊緣檢測
- 畢業(yè)設(shè)計(jì)(論文)-彩色圖像分割技術(shù)研究
- 外文翻譯--圖像分割
- 外文翻譯--圖像分割
- 外文翻譯--基于偏微分方程的彩色圖像分割
- 外文翻譯--基于偏微分方程的彩色圖像分割
- 遙感圖像空間增強(qiáng)方法分析【畢業(yè)論文】
- 畢業(yè)論文外文翻譯-數(shù)字圖像處理
評(píng)論
0/150
提交評(píng)論