簡介:本科畢業(yè)設(shè)計(jì)外文資料翻譯系別工程技術(shù)系專業(yè)機(jī)械設(shè)計(jì)制造及其自動(dòng)化姓名學(xué)號(hào)2012年4月25日外文資料翻譯譯文MICROWAVEINWALNUTSHELLMATERIALSTENSILEMECHANICALPROPERTIESOFIMPACTSTUDYABSTRACTTAKINGTHEPICKINGFRESHWALNUTSASTHERESEARCHOBJECT,THEMICROWAVEWALNUTBREAKHULLTEST,BREAKHULLRATEOF8765ANDOFMICROWAVEEFFECTSONTHEWALNUTSHELLMATERIALSTENSILEMECHANICALPROPERTIESOFINFLUENCE,ANDTHERESULTSSHOWEDTHATTHEMICROWAVEPROCESSING,WALNUTSHELLMATERIALELASTICMODULUS,TENSILESTRENGTHANDMECHANICALINDEXESANDPROCESSINGTHEREWERENOSIGNIFICANTCHANGESBEFOREINADDITION,ALSOINWALNUTSHELLTENSILEMECHANICALPROPERTIESOFTHETESTEDANDWONTHEKEYWORDSMICROWAVEBREAKHULLTHEWHOLESHELLTENSILEMECHANICALPROPERTIES0PREFACEWALNUTMACHINERYOFTHEEXISTENCEOFHIGHRATEOFBROKENEMERGED,THEKERNELRATEISLOWHASBEENRESTRICTEDWALNUTREALIZEMECHANIZATIONPRODUCTIONANDPROCESSINGOFTHEIMPORTANTREASONOFOURCOUNTRY,THEDEVELOPMENTOFWALNUTINDUSTRIALCAUSEDCERTAININFLUENCETHEREFORE,EXPLORENEWMETHODSFORREALIZINGMECHANIZATIONWALNUTEMERGEDINDUSTRIALIZATIONANDEXPORTINCOME,INCREASETHEECONOMICBENEFITHASURGENTPRACTICALSIGNIFICANCEATPRESENT,THETECHNOLOGYFORWALNUTMECHANIZATIONEMERGTHEAUTHORONTHEBASISOFPREVIOUSSTUDIES,OFMICROWAVETECHNOLOGYFUNCTIONMECHANISMOFWALNUTEMERGEDPROPOSESTHATEMERGEDWALNUTMICROWAVEMETHODISFEASIBLETHISPAPERISTOSTUDYTHISPAPERFURTHERDISCUSSESTHEFRONT,TOSEARCHFORMICROWAVEPROCESSINGTECHNOLOGYPARAMETERSPOWER,TIME,HUMIDITYANDTEMPERATUREINWALNUTSHELLMATERIALMECHANICSANDTHEINFLUENCELAWOFNATURE,STUDIEDTHEMICROWAVETECHNOLOGYROLEWALNUTSHELLMATERIALSTRETCHINGBEFOREANDAFTERTHEMECHANICALPROP1WALNUTMICROWAVEBREAKHULLTESTWALNUTISPRIMARILYTHROUGHMICROWAVEMICROWAVEBREAKHULLROLEINWALNUTMEAT,ITSINTERNALWATERMOLECULESINALTERNATINGUNDERTHEINFLUENCEOFELECTROMAGNETICFIELDPOLARIZATIONORIENTATIONFORHIGHFREQUENCYSHIFT,THEINTERNALWALNUTINSHORTTIMEPRODUCEVERYHIGHQUANTITYOFHEATFORMHIGHPRESSUREWATERVAPOR,WHENWATERVAPORPRESSUREOFTHEPRESSUREOFWALNUTISINFLATIONPRESSUREISGREATERTHANTHEULTIMATETENSILESTRESSWALNUT,WALNUTBURSTTHEREFORE,THEDENSITYOFTHENUTSHELL11MATERIALSANDEQUIPMENTTESTISJUSTPICKEDOFFCORTICALJINLONG1COTTONWALNUTASTHERESEARCHOBJECT,THEWALNUTSMOISTURECONTENTOF21,TOPREVENTWATERLOSS,WILLTESTSAMPLEINAPLASTICBAGSEALEDSTOREDINTHEREFRIGERATORFORREFRIGERATIONWLD07S08TYPEGLANZEMICROWAVEOVENS,MICROWAVEROLE,POWERANDTEMPERATUREARETIMEADJUSTABLEVERNIERGAUGES12TESTMETHODTHETHREEFACTORS3LEVELCOMPLETELYCOMBINATIONTEST,EACHPORTFOLIOSELECTIONTHREESHAPE,SIZECLOSEOFWALNUTSIMILARASREPEATEDSAMPLESBEFORETHETESTTESTWALNUTTRUNNION,DIAMETER,CALIPERSIZETHEEND,OBSERVATIONANDRUPTUREOFWALNUTRECORDED13RESULTSANDANALYSISWALNUTMICROWAVEBREAKHULLSITUATIONASISSHOWNINTABLE1TABLE1WALNUTMICROWAVEBREAKHULLTESTRESULTSFROMTHETABLETHAT1,81AWALNUT,ONLY10STARHAVENOTBROKENOPEN,BREAKHULLRATEREACHED8765,IFCONSIDERALONEEACHTEMPERATURE,EACHPOWER,EACHTIMEBREAKHULLRATE,THERESULTINTABLE2TABLE2SINGLEFACTORINWALNUTTHEINFLUENCEOFEMERGEDRATEFROMTHETABLE2,ITISKNOWNTHATINTHETHREEFACTORS,THETEMPERATUREOFHIGHANDLOWVAPORPRESSUREOFTHEINTERNALTOTHESIZEOFTHESIZEOFTHEPOWERTOTHEINTERNALTEMPERATURERISETHESPEEDOFTHEWATERVAPORBECAUSEWLD07S08TYPEMICROWAVEEQUIPMENTWORKCHARACTERISTICS,THATIS,TOSTOPWORKINGAFTERSETTEMPERATURE,SOTHELENGTHOFTIMECANNOTINFLUENCEWITHINTHEMAXIMUMPRESSURESTEAMSHELL,WILLNOTAFFECTTHESPEEDOFTEMPERATURERISESOTIMETOTHEINFLUENCEOFTHEFACT2MICROWAVEINWALNUTSHELLMATERIALSTENSILEMECHANICALPROPERTIESOFINFLUENCETHROUGHTOTHEWALNUTMICROWAVEBEFOREANDAFTERPROCESSINGTHECONTRASTTESTTHATDESTRUCTIVECOMPRESSION,MICROWAVETREATMENTOFWALNUTCOMPRESSIONSIGNIFICANTLYLESSDESTRUCTIVEPOWER,THISSHOWSTHATONLOTSOFWALNUTBREAKHULL,FORINTHEMICROWAVETREATMENTNOTBURSTOFWALNUTANDCOMPRESSIONISTHEEASYEMERGEDINADDITION,WEALSOFOUNDTHATTHEMICROWAVEPROCESS,WALNUTHIGHPRESSUREWATERVAPORBYTHEINSIDEOFTHEROLE,THETENSILEDEFORMATIONHAPPENTHEREFORE,THEMICROWAVETECHNO21SAMPLEPREPARATIONTHETESTSAMPLESANDINFRONTOFTHEEXPERIMENTALSTUDYOFWALNUTEMERGEDTHESAME,WITHTHESAWINWALNUTALONGTHEAXISDIRECTIONFORABOUT10MMLONG,WIDEABOUT2MMOFWALNUTASSPECIMENSBECAUSEWALNUTISCURVEDSHELLFORM,HADTAKENTHELENGTHOFTHESPECIMENSHOULDBEASLOWASPOSSIBLE,INTHEDIRECTIONOFTHESMALLCURVATUREOFTHEBETTEREFFECTUNDERSAWSWILLPASSTHEMICROWAVEPROCESSINGANDWITHOUTPROCESSINGCONTROLGROUPWEREMADEOFWALNUTSPECIMENS,WITHCALIPERMEASUREDTH22EQUIPMENTANDMETHODSSANSCMT6140MICROCOMPUTERCONTROLELECTRONICUNIVERSALTESTINGACCURACYOF5N200NSENSORSETFOR10MMLOADINGRATE/MIN,THEROUTINEMATERIALMECHANICSTENSILETESTMETHODSBECAUSEOFTHESPECIMENISTOOSMALL,TOAVOIDGRIPPINGBROKEWHENSPECIMENSORCLIPSLANTING,GRIPPINGUSETWEEZERSWHENOPERATINGRECORDFORCEDEFORMATIONANDFRACTUREWALNUTOFFORCEVALUE23RESULTSANDANALYSISWALNUTSHELLMATERIALSTENSILEMECHANICALINDEXESSUCHASTESTVALUESHOWNINTABLE3FROMTHETABLE3,ITISKNOWNTHATTHEMICROWAVEPROCESSINGGETAFTERTHEMODULUSOFELASTICITYASWALNUT2182MPA,TENSILESTRENGTHOF10043MPABEFORETHEMICROWAVEPROCESSINGELASTICMODULUSIS2252MPA,TENSILESTRENGTHFOR957MPAMICROWAVEEFFECTSONTHEWALNUTSHELLTHATMATERIALHASALITTLEINFLUENCEONTENSILEMECHANICALPROPERTIESLIANGLIETCMICROWAVEINWALNUTSHELLMATERIALSTENSILEMECHANICALPROPERTIESOFIMPACTSTUDYTABLE3WALNUTSHELLMATERIALSTENSILEMECHANICALPROPERTYINDEX3WALNUTSHELLWHOLESTRETCHMECHANICSPERFORMANCEISDETERMINEDEMERGEDFROMWALNUTMICROWAVEEXPERIMENTALRESULTSTHAT,BYALLTHEBREAKDOWNOFTHESAMPLEAFTERMICROWAVEPROCESSINGAREFROMWALNUTSUTURELINETHEBREAKDOWNOFTHEPLACE,ANDITSHOWSINWALNUTSUTURELINETENSILEMECHANICALPROPERTIESANDSURFACEOFDIFFERENTMATERIALSWALNUTTHEREFORE,THENEEDTOPLACERELICTTENSILEMECHANICALNATUREOFTHESTUDY,THISNEEDSINWALNUTSHELLTHETENSILETESTBECAUSEOFWALNUTSIZEISDIFFER,IRREGULARSHAPE,TESTTHECLIPIFTOOLOOSE,THETENSILEEASIL31EQUIPMENTANDMETHODSTESTINSANSCMT6140MICROCOMPUTERCONTROLELECTRONICUNIVERSALTESTINGMACHINE,ASELFMADEWALNUTSPECIALJIGBEFORETHETEST,WILLWALNUTANDSURFACEWITHAFIXTUREACETONECLEAN,ANDTHEDETERMINATIONOFWALNUTTRUNNION,SIDEDIAMETERANDDIAMETERTHETWOCLAMPINGFIXTUREFIRSTINTHETESTINGMACHINE,ADJUSTTHEFIXTURECHUCKSIZETOAPPROPRIATEVALUEWILLCHUCKAFTERFIXED,AGAINWITHSTRENGTHANDABGLUESTICKTOTHEFIXTUREWILLWALNUTWILLSHOWTHESEAMSOFTHEWALNUT,DONOTSTICK32RESULTSANDANALYSISINWALNUTSHELLWHENTHETENSILE,WALNUTSEAMPLACEALONGTHECRACKEDATTHISTIME,THESTRESSINWALNUTSUTURELINEREACHESLIMIT,THISSTRESSVALUEISMEASUREDBYTHETESTINGMACHINEOFTHEMOSTSTRONGLYANDSHIFTEDWALNUTINCIRCULARSEAMFORTHECALCULATIONOFTHESECTIONALAREATESTRESULTSLISTEDINTABLE4TABLE4WALNUTSHELLTENSILETESTTHETESTRESULTSFROMTHETABLE4,ITISKNOWNTHATTHESEAMOFWALNUTINLIMITTENSILESTRESSFOR147MPA,ANDWALNUTONTHESURFACETENSILESTRESSVALUE957MPACOMPAREDAREMUCHSMALLER,THISISWHATWALNUTINMICROWAVEROLEINTHECAUSEOFTHEBROKENSEAMAFTER,THISLIMITTENSILESTRESSCANBEUSEDASMICROWAVETECHNOLOGYPARAMETERSELECTIONBASIS4CONCLUSIONBASEDONTHETESTOFFRESHWALNUTSEMERGED,ANDWALNUTSHELLMATERIALANDTHEMECHANICALPROPERTIESOFWALNUTSHELLARETESTED,GETTHEFOLLOWINGMAINCONCLUSIONS1THEFRESHWALNUTSMICROWAVEPROCESSAFTERTHEBREAKHULLRATECANAMOUNTTO8765,INTHEMICROWAVETECHNOLOGYPARAMETERS,TEMPERATUREANDPOWERISTHETIMEFACTORTOINFLUENCEEMERGEDRATE2TESTAFTERTHEMICROWAVEPROCESSINGOFWALNUTELASTICMODULUSIS2182MPA,TENSILESTRENGTHOF10043MPA,BOTHWITHTHEPROCESSINGTHEREWERENOSIGNIFICANTCHANGESBEFORETHATMICROWAVEROLEINWALNUTSHELLMATERIALHASALITTLEINFLUENCEONTENSILEMECHANICALPROPERTIES3TESTINTHESEAMOFWALNUTLIMITTENSILESTRESSVALUEIS141MPA,ANDWALNUTSHELLMATERIALLIMITTENSILESTRESSVALUEISMUCHMORETHANASMALL,FORCHOOSINGSUITABLEFORMICROWAVETECHNOLOGYPARAMETERSOFWALNUTEMERGEDPROVIDESREFERENCEBASISREFERENCES1SHIJIANXIN,MICHAELESSIENMOVINGARMYWALNUTKERNELMACHINERYATHOMEANDABROADANDEMERGEDFROMTHEPRESENTSITUATIONANDTHEPROBLEMSTUDYJJXINJIANGAGRICULTURALMECHANIZATION,2001629322MICHAELESSIENMOVINGARMYWALNUTKERNELMETHODSANDTESTEMERGEDTAKEDURUMQIXINJIANGAGRICULTURALUNIVERSITY,20023DONGYUANDE,SHIJIANXIN,QIAOYUANYUANWALNUTDIFFERENTWAYOFEMERGEDEMERGEDTAKEEFFECTBENEVOLENCEJJOURNALOFAGRICULTURALPRODUCTSPROCESSING,2007945,94SHIJIANXIN,ZHAOHAIJUN,MICHAELESSIENMOVINGARMYBASEDONTHEFINITEELEMENTANALYSISTECHNOLOGYOFWALNUTSHELLJJOURNALOFAGRICULTURALENGINEERING,2005,2111851885WUZIYUECOTTONWALNUTSHELLTAKEBENEVOLENCEOFMECHANICALJJOURNALOFAGRICULTURALENGINEERING,1995,1141641696YANGRUI,YANLASERANDWALNUTINTERACTIONISTHEMECHANICSANDFINITEELEMENTANALYSISJAGRICULTUREMACHINERESEARCH,200847LIXIAOXIABUCKWHEATSHELLMECHANICALPROPERTIESANDMICROWAVEPROCESSTESTEMERGEDDTAIGUSHANXIAGRICULTURALUNIVERSITY,20088ZHANGLICHESTNUTMICROWAVEDEVICEMECHANISMANDPROCESSINGTECHNOLOGYRESEARCHDHEFEIHEFEIUNIVERSITYOFTECHNOLOGY,20049YANGFUEPHRAIM,TAKAMIM,ZHUNIUUSETHEMICROWAVECANRELATEDTOTHENEWTECHNOLOGYOFGARMENTSSHELLTONEWMETHODJFOODSCIENCEANDTECHNOLOGY,200698083外文原文微波對(duì)核桃殼體材料拉伸力學(xué)性質(zhì)的影響研究摘要以剛采摘的新鮮核桃為研究對(duì)象,進(jìn)行了微波核桃破殼試驗(yàn),破殼率達(dá)到875,同時(shí),研究了微波作用對(duì)核桃殼體材料拉伸力學(xué)性質(zhì)的影響,結(jié)果表明微波處理后,核桃殼體材料彈性模量、抗拉強(qiáng)度等力學(xué)性質(zhì)指標(biāo)與處理前比較無明顯變化。另外,還對(duì)核桃整殼拉伸力學(xué)性質(zhì)指標(biāo)與處理前比較無明顯變化。另外,還對(duì)核桃整殼拉伸力學(xué)性質(zhì)進(jìn)行了測(cè)定獲得了核桃殼縫合線處的拉伸強(qiáng)度極限值為147MPA,為確定核桃微波破殼所需的膨脹壓力提供了參考依據(jù)。關(guān)鍵詞微波;破殼;整殼拉伸;力學(xué)性質(zhì)0前言核桃機(jī)械破殼存在的破碎率高、整仁率低等問題一直是制約核桃實(shí)現(xiàn)機(jī)械化生產(chǎn)加工的重要原因,對(duì)我國核桃產(chǎn)業(yè)的發(fā)展造成了一定影響。因此,探索新的機(jī)械化核桃破殼方法對(duì)于實(shí)現(xiàn)產(chǎn)業(yè)化、出口創(chuàng)匯、增加經(jīng)濟(jì)效益等具有迫切的現(xiàn)實(shí)意義。目前,國內(nèi)外對(duì)于核桃機(jī)械化破殼技術(shù)的研究主要集中在定間隙擠壓破殼、打擊破殼等方法及應(yīng)用有限元等方法進(jìn)行相關(guān)破殼機(jī)械的設(shè)計(jì)方面,但仍存在破碎率高、整仁率低等問題。另外,將新興技術(shù)應(yīng)用于堅(jiān)果破殼的研究也是方興未艾,如楊銳等對(duì)核桃受激光輻照行為進(jìn)行了數(shù)值分析與模擬,探索了激光技術(shù)脫殼機(jī)理;李曉霞探索了蕎麥微波脫殼方法;張莉、楊芙蓮等利用微波技術(shù)實(shí)現(xiàn)了對(duì)板栗的脫殼。作者在前人研究的基礎(chǔ)上,對(duì)微波技術(shù)進(jìn)行核桃破殼的作用機(jī)理進(jìn)行了初探,證明核桃微波破殼方法是可行的。本文是對(duì)前面研究的進(jìn)一步深入探討,為探求微波加工工藝參數(shù)功率、時(shí)間、濕度和溫度對(duì)核桃及殼體材料力學(xué)性質(zhì)的影響規(guī)律,試驗(yàn)研究了微波技術(shù)作用前后核桃殼體材料拉伸力學(xué)性質(zhì)的差異,并測(cè)定了核桃殼縫合線處的拉伸強(qiáng)度極限值,為確定核桃微波破殼所需的膨脹壓力并為進(jìn)一步指導(dǎo)微波技術(shù)參數(shù)的選擇提供參考依據(jù)。1核桃微波破殼試驗(yàn)核桃微波破殼主要是通過微波作用于核桃仁時(shí),其內(nèi)部水分子在交變電磁場作用下極化取向作高頻轉(zhuǎn)變,致使核桃殼內(nèi)部在短時(shí)間內(nèi)產(chǎn)生很高的熱量形成高壓水汽,當(dāng)高壓水汽對(duì)核桃殼的壓力即膨脹壓力大于核桃殼的拉伸極限應(yīng)力時(shí),核桃殼發(fā)生破裂。因此,果殼的致密結(jié)構(gòu)是其內(nèi)部形成高壓的重要保證;核桃仁所含的水分是內(nèi)部產(chǎn)生高壓水汽的物質(zhì)基礎(chǔ);微波的技術(shù)參數(shù)功率、時(shí)間和溫度等則是核桃殼能夠破裂的外在動(dòng)力。因此,有必要對(duì)核桃微波破殼所需的技術(shù)參數(shù)進(jìn)行試驗(yàn)研究。11材料與儀器試驗(yàn)選用采摘后剛褪去外皮的晉龍1號(hào)棉核桃為研究對(duì)象,核桃仁含水率達(dá)21,為防止水分散失,將試驗(yàn)樣本用塑料袋密封置于冰箱內(nèi)藏,WLD07S08型格蘭仕微波爐,微波作用溫度、功率和時(shí)間均可調(diào);游標(biāo)卡尺。12試驗(yàn)方法采用3因素3水平完全組合試驗(yàn),每個(gè)組合選取3個(gè)形狀相似、大小相近的核桃作為重復(fù)樣本,試驗(yàn)前測(cè)試核桃的軸徑、橫徑、測(cè)徑大小。試驗(yàn)結(jié)束時(shí),觀測(cè)核桃殼破裂情況并進(jìn)行記錄。13結(jié)果與分析核桃微波破殼情況如表1所示。表1核桃微波破殼試驗(yàn)結(jié)果由表1可知,81顆核桃中只有10顆未破開,破殼率達(dá)到8765,若單獨(dú)考慮每個(gè)溫度、每個(gè)功率、每個(gè)時(shí)間的破殼率,其結(jié)果見表2。表2單因素對(duì)核桃破殼率的影響由表2可知,在這3個(gè)因素中,溫度的高低決定殼體內(nèi)的水蒸汽壓力的大?。还β实拇笮Q定殼體內(nèi)水蒸汽溫度上升的快慢;由于WLD07S08型微波設(shè)備的工作特點(diǎn),即達(dá)到設(shè)定溫度后就停止工作,故時(shí)間的長短不能影響殼體內(nèi)水蒸汽的最大壓力,也不影響溫度上升的快慢,所以時(shí)間因素對(duì)破殼率的08型微波設(shè)備的工作特點(diǎn),即達(dá)到設(shè)定溫度后就停止影響相對(duì)較小,與前期研究結(jié)果一致。2微波對(duì)核桃殼體材料拉伸力學(xué)性質(zhì)的影響通過對(duì)核桃微波處理前后壓縮破壞力的對(duì)比試驗(yàn)得知,微波處理后核桃的壓縮破壞力明顯減少,這說明在進(jìn)行大量核桃破殼時(shí),對(duì)于在微波處理后未發(fā)生破裂的核桃再進(jìn)行壓縮破殼是比較容易的。另外,我們還發(fā)現(xiàn)微波作用過程中,核桃殼受到內(nèi)部高壓水汽的作用,發(fā)生了拉伸變形。因此,研究微波技術(shù)對(duì)核桃殼體材料拉伸力學(xué)性質(zhì)的影響,可為進(jìn)一步揭示核桃微波破殼的作用機(jī)理提供依據(jù)。作者對(duì)微波作用
下載積分: 5 賞幣
上傳時(shí)間:2024-05-20
頁數(shù): 16
大?。?0.24(MB)
子文件數(shù):
簡介:中文3685字附件一外文資料翻譯譯文流體力學(xué)混合在單螺桿擠出機(jī)RAVLNDRANCHELLA和JULIOMOTTLNOMASSACHUSETTS州AMHERST,MASSACHUSETTS大學(xué),化學(xué)工程系01003卷矩形空腔流圖5為一個(gè)序列的一個(gè)接口,已進(jìn)行二維矩形腔流拉伸步驟,在長度增長的界面,LT)伴隨著條紋厚度減少而減少,它被定義為相鄰的接口之間的平均垂直距離,因此LTST常數(shù),BIGGS和MIDDLEMAN1974B使用一個(gè)簡化的標(biāo)記和細(xì)胞(MAC)技術(shù)HARLOW和AMSDEN,1970來追蹤該接口的位置。然而,他們只考慮水平接口以及他們認(rèn)為小拉伸比率的情況。圖5對(duì)兩個(gè)相鄰的垂直拉伸的流體層之間的接口在二維矩形腔流的步驟順序示意圖在一個(gè)典型的數(shù)值模擬中,變形及連續(xù)線拉伸(或表面)是使用有限數(shù)量的粒子模擬。對(duì)于幅度的一個(gè)或兩個(gè)數(shù)量級(jí)的相對(duì)伸展的線變形,包含所述線路分離的單個(gè)顆粒,定義并不清晰,對(duì)每一個(gè)粒子的初始濃度(每單位長度的粒子數(shù)量)會(huì)有一段時(shí)間在這幾乎不可能重建。(如果粒子流混亂,這個(gè)問題會(huì)急劇變得嚴(yán)重。)當(dāng)進(jìn)行線路中的示蹤粒子模擬時(shí),相同的問題會(huì)出現(xiàn)在實(shí)驗(yàn)工作中,另一方面,該線路不能過于集中,因?yàn)樗皇潜粍?dòng)接口,如果線路是可溶性示蹤劑模擬,問題將會(huì)擴(kuò)散。一般來說,這似乎很難遵循傳統(tǒng)的跟蹤方法或?qū)嶒?yàn)的或相對(duì)較高的拉伸比拉伸,數(shù)值誤差可能會(huì)使它不可能實(shí)現(xiàn)可逆性預(yù)期規(guī)則運(yùn)動(dòng)KHAKHAR等人,1984,界面的長度變化的關(guān)系可以用有限的材料進(jìn)行拉伸計(jì)算11該組包含該接口的差分線元件的初始取向的需要被指定,對(duì)于垂直界面(垂直于移動(dòng)板塊)0,L和水平界面(平行移動(dòng)板塊)L,0,以及所有的行元素,由于它是在初始配置,所以用公式11計(jì)算是相對(duì)簡單的。這里使用的方法可以進(jìn)行計(jì)算任意大的拉伸比,為了能夠運(yùn)用公式11,一種光腔流場的數(shù)學(xué)描述是有必要的,在這種情況下,參與關(guān)于瞬態(tài)問題利用穩(wěn)態(tài)速度分布的誤差比較小,例如穩(wěn)態(tài)操作條件下迅速達(dá)到正常操作條件(BIGG和MIDDLEMAN,1974BERWIN和MOKTHARIAN,1981),由公式1可以得出這一流程最簡單的說明。圖6比較簡化為矩形空腔流獲得使用SFT()和公式12得到W/H15然而,使用公式1和公式11結(jié)合以確定LT的值,在方向和變形經(jīng)過由材料元件移動(dòng)到其互補(bǔ)的位置變化假設(shè)是必要的。但是,計(jì)算表明,混合實(shí)現(xiàn)假定取向的變化是非常敏感的方向,因此需要開發(fā)一個(gè)流場的數(shù)學(xué)描述,并不需要這樣任意假設(shè)。在NS方程的數(shù)值解這個(gè)流場公式L,公式2是可能的,它似乎并不需要計(jì)算拉伸比率或更高的基于當(dāng)前的跟蹤技術(shù),此外,一個(gè)半解析處理允許對(duì)不同參數(shù)的影響更易于可理解。因此,在附錄中,KANTOROVICHGALERKIN方法KANTOROVICHANDKRYLOV,1964被用來獲得一個(gè)近似的解析解的穩(wěn)態(tài),蠕變流動(dòng)腔流方程。根據(jù)公式A8,A15和A22在公式A22中,,和的作用僅僅被定義為腔的長寬比。雖然這些方程滿足邊界條件下速度的平均移動(dòng)量,但僅在使用它們計(jì)算流線時(shí)相對(duì)準(zhǔn)確,對(duì)于復(fù)雜的縱橫比,與那些得到更準(zhǔn)確的數(shù)值方法PAN和ACRIVOS,1967;以及坐標(biāo)的最大和最小坐標(biāo)重合幾乎完全與SFT的相應(yīng)互補(bǔ)值的位置(圖6),這些方程就不適用了。通過最初垂直接口,使用公式11和公式12,計(jì)算相對(duì)拉伸為兩個(gè)不同方面比率在圖7中表示。在特有的循環(huán)時(shí)間,縱橫比對(duì)界面的相對(duì)拉伸只有很小的影響。關(guān)于單調(diào)遞增的均值曲線的振蕩周期值約等于,振蕩周期可以由圖8得出,當(dāng)拉伸率DLT/DT時(shí),作圖的接口特定速率準(zhǔn)確顯示了相同特征的振蕩,這樣的振蕩特征需要重新定位(圖3B)。圖7接口的矩形腔流函數(shù)的計(jì)算與速度場由公式12得出,最初垂直界面(垂直于移動(dòng)板)除以腔成體積相等的通道縱橫比的相對(duì)拉伸圖8無因次的特定接口的拉伸率在矩形空腔流W/H15,最初垂直界面圖9相對(duì)拉伸中矩形腔流接口的初始方向的影響(W/H15)對(duì)單一的接口長度影響初始方向如圖9所示,該混合程度的初始取向可通過圖9中工件的坐標(biāo)表現(xiàn)。研究發(fā)現(xiàn),每一種情況下計(jì)算出的界面面積的實(shí)際值對(duì)初始取向的依賴性非常小,在圖8中可以查找原因,一個(gè)最初垂直界面區(qū)域(垂直于流線)和一個(gè)最初水平界面區(qū)域(幾乎平行流簡化)之間存在巨大差異,極大實(shí)現(xiàn)越來越多的最初垂直界面縮小成為水平對(duì)齊。同時(shí)發(fā)現(xiàn)混合相對(duì)等于甚至大于位移的初始位置,接口相對(duì)的界面區(qū)域可以認(rèn)為是近似關(guān)系圖10變化在沿矩形空腔流動(dòng)的流線行進(jìn)的差分材料元件的標(biāo)高(A)和方位(B)所示可以由公式12計(jì)算出速度F是正常材料平面之間的角度和軸圖11比較的界面拉伸矩形空腔流預(yù)測(cè)了SFT,預(yù)測(cè)使用的流場比值12─,(W/H15,最初垂直界面)13而在擠出機(jī)混合分析中速度計(jì)算可以由等式12得出,這并不包括另外概念上的問題,這與SFT的計(jì)算量相比明顯增加了,因此,確定流體元件的取向變化與該流場獲得的信息是否可以被納入使用SFT結(jié)果準(zhǔn)確混合計(jì)算是有用的,圖10中,表示典型的時(shí)間差分線元的取向變化的關(guān)系,也表示在圖中的上面部分是元素相應(yīng)的坐標(biāo)(圖10A),虛線表示最大值和最小值的位置。圖表明這里本身能夠快速建立坐標(biāo),可以忽略材料元件的初始位置或方向,因此,當(dāng)圍繞軸方向旋轉(zhuǎn)到界面區(qū)域時(shí),相關(guān)因素旋轉(zhuǎn)接近。SFT的研究與假設(shè)是邊界旋轉(zhuǎn)近,通過材料元素混合的預(yù)測(cè)是否有用,現(xiàn)在得到驗(yàn)證。圖12腔縱橫比對(duì)拉伸與使用SFT預(yù)測(cè)矩形方腔流的初始垂直界面的影響使用SFT計(jì)算初始垂直界面的變形與使用圖11中12式相比,旋轉(zhuǎn)流體元素在空間旋轉(zhuǎn),兩條曲線的數(shù)值有較好的一致性,然而,使用SFT得到的振蕩周期是使用公式12得到結(jié)果的三倍以上,這與再分配時(shí)的值大概一致由SHEARER(1973)定義,以從腔體的一側(cè)完全置換流體的其它部分所需要的時(shí)間使用SFT計(jì)算14使用這兩種不同的流場的初始垂直界面混合預(yù)測(cè)之間的公式,即使在圖11所示的比較大的拉伸比也適用,這似乎很奇怪,因?yàn)镾FT預(yù)測(cè)水平的接口不變形以及接口的很大一部分是近于水平拉伸比。然而,對(duì)于有限次的界面是從來沒有完全意義上的水平,SFT中預(yù)測(cè)一個(gè)小而有限的拓展與公式12的結(jié)果一致。預(yù)測(cè)弱混合的實(shí)現(xiàn)使用公式12得到縱橫比,采用SFT確認(rèn)(圖12),SFT中相關(guān)要素按回轉(zhuǎn),由此可見,通過公式12可以計(jì)算出復(fù)制的矩形腔流混合的主要特點(diǎn),從而,在三維空間中使用擠出流是有利的,因?yàn)樗鄬?duì)公式12簡單了。由于缺少實(shí)驗(yàn)數(shù)據(jù),實(shí)驗(yàn)數(shù)據(jù)的理論預(yù)測(cè)比較難,可行性實(shí)驗(yàn)數(shù)據(jù)不完整(例如BIGG和MIDDLEMAN,1974B兩者都是因?yàn)椴淮_定二維流動(dòng)是否在實(shí)驗(yàn)裝置中實(shí)現(xiàn)和并不是大多數(shù)據(jù)在有利的情況下測(cè)得(較大的縱橫比)。但是,綜合實(shí)驗(yàn)程序正在進(jìn)行中(CHIEN,1984)。從空腔流得到的結(jié)論在擠出機(jī)中的應(yīng)用應(yīng)謹(jǐn)慎,但應(yīng)注意的是,流速在整個(gè)擠出機(jī)中的橫截面的分布可防止確切坐標(biāo)中的矩形腔和軸向距離沿著所述擠出機(jī)連續(xù)時(shí)間之間轉(zhuǎn)化,另外,從拓?fù)涞慕嵌葋砜?,如果我們考慮兩種流體混合,說A和B最初在腔流水平層狀,然后在側(cè)壁的兩條接觸線,最后存在于整個(gè)運(yùn)動(dòng),然而,擠出機(jī)最初充滿,隨后A和B作為參考,相鄰的水平層將有明顯區(qū)分,沒有接觸線,當(dāng)在垂直界面時(shí)將會(huì)出現(xiàn)類似情況。圖13通過擠出機(jī)的流場中的引入相鄰的水平層的兩種液體混合產(chǎn)生的層狀結(jié)構(gòu)的示意圖圖14跡線在擠出機(jī)通道材料元素從以上討論中可以很明顯得出,該方法在用于分析三維擠出流量的二維空腔流混合是可能的沒有準(zhǔn)確的擴(kuò)展,但是近似關(guān)系的可能性有待繼續(xù)探討。分析單螺桿擠出機(jī)的混合關(guān)于在擠出機(jī)中混合方法的分析主要與用于所述螺旋環(huán)形混合器類似,修改是必要的,但是,通過公式12算出的速度場,得出一個(gè)完全的分析方法是不可能的,由在流體元件跡線的總數(shù)不連續(xù)可排除SFT。圖13是擠出機(jī)中通道的兩種液體的混合示意圖,截面切割和軸向切割顯示由混合作用所產(chǎn)生的層狀結(jié)構(gòu)。至于螺旋環(huán)形混合器,和S用作最大混合度的局部措施,混合參數(shù)和分部在任一通道截面對(duì)應(yīng)流場的不均勻性中,并在進(jìn)料面上條紋的方向及厚度分布,對(duì)于許多應(yīng)用來說在第一個(gè)片刻來描述這些分布應(yīng)該是足夠了。力矩軸向配置和橫截面的混合參數(shù)分布的裝置文件可以如下確定(圖14所示)(1)許多不同材料的平面確定在進(jìn)料平面,每個(gè)對(duì)應(yīng)界面區(qū)域中的原料的位置和方向。選擇平面的數(shù)量應(yīng)足夠大,從而這個(gè)變量計(jì)算分布的影響可以忽略不計(jì);當(dāng)然,實(shí)際數(shù)字依賴所取得的結(jié)果;在實(shí)踐中,200300因素被認(rèn)為足夠條紋厚度幅度下降三個(gè)數(shù)量級(jí)。注意RTD被發(fā)現(xiàn)對(duì)混合參數(shù)分布到所選材料的元素不敏感。(2)公式2用于所述流場的數(shù)學(xué)描述來計(jì)算這些材料每個(gè)平面的拉伸過程。(3)均值和所述混合參數(shù)分布的情況由幾個(gè)軸向位置確定,這種方法是非常通用的,并且可以被應(yīng)用到其它混合器中去。對(duì)于連續(xù)流動(dòng)系統(tǒng)的宏觀混合效率是由下列關(guān)系式確定(OTTINO等人,1981)15在更詳細(xì)的計(jì)算中,檢查上混合綁定是很有意義的,通過設(shè)置公式15中右側(cè)的EFFZ1獲得。通常情況下,定義在上部混合預(yù)測(cè)值顯著高于大多數(shù)實(shí)際混合流量(OTTINO和MACOSKO,1980;OTTINO,1983),但考慮到估計(jì)模型參數(shù)對(duì)混合模型參數(shù)的影響,計(jì)算綁定上混合模型參數(shù)對(duì)于SFT特別簡單。16取函數(shù){N}和含有,的函數(shù)以及L/H函數(shù)的比例常數(shù)的平均值(需要考慮其上的平均停留時(shí)間的影響)。因此,由公式16來看,影響混合的相關(guān)參數(shù)為{N},,,和L/H。W/H的影響只能間接地通過移動(dòng)流體單元的垂直坐標(biāo)變化。在此基礎(chǔ)上,當(dāng)上限值增大時(shí),混合的可能性將被增大,然后由公式16得出,混合參數(shù)方程可通過(1)保持L/H和不變,增加;(2)保持和不變,增加L/H;(3)保持L/H和不變,當(dāng)時(shí),增加;當(dāng)17和以及(4)HL/H和保持不變,減少H。這些結(jié)論與定性實(shí)驗(yàn)結(jié)果相一致(MADDOCK,1959;SHERIDAN,1975),在下一節(jié)中將使用更完美的分析方法進(jìn)行測(cè)試。附件二外文資料原文FLUIDMECHANICSOFMIXINGINASINGLESCREWEXTRUDERRAVLNDRANCHELLAANDJULIOMOTTLNODEPARTMENTOFCHEMICALENGINEERING,UNIVERSITYOFMASSACHUSETTS,AMHERST,MASSACHUSETTS01003RECTANGULARCAVITYFLOWFIGURE5ISADIAGRAMOFASEQUENCEOFSTEPSINTHESTRETCHINGOFANINTERFACETHATHASBEENSUBJECTEDTOTWODIMENSIONALRECTANGULARCAVITYFLOWTHEINCREASEINLENGTHOFTHEINTERFACE,LT,ISACCOMPANIEDBYADECREASEINTHESTRIATIONTHICKNESS,DEFINEDASTHEAVERAGEPERPENDICULARDISTANCEBETWEENNEIGHBORINGINTERFACES,SOTHATFORLONGTIMESLTSTCONSTANTBIGGSANDMIDDLEMAN1974BUSEDASIMPLIFIEDMARKERANDCELLMACTECHNIQUEHARLOWANDAMSDEN,1970TOTRACKTHEPOSITIONOFTFIGURE5SCHEMATICDIAGRAMOFSEQUENCEOFSTEPSINTHESTRETCHINGOFANINTERFACEBETWEENTWOADJACENTVERTICALFLUIDLAYERSINTWODIMENSIONALRECTANGULARCAVITYFLOWINATYPICALNUMERICALSIMULATION,THEDEFORMATIONANDSTRETCHINGOFCONTINUOUSLINESORSURFACESISMODELEDUSINGAFINITENUMBEROFPARTICLESFORARELATIVESTRETCHOFONEORTWOORDERSOFMAGNITUDEASTHELINEDEFORMSTHEINDIVIDUALPARTICLESCOMPRISINGTHELINESEPARATE,MAKINGTHELINELESSCLEARLYDEFINEDFOREVERYINITIALCONCENTRATIONOFPARTICLESNUMBEROFPARTICLESPERUNITLENGTHTHEREWILLBEATIMEBEYONDWHICHITBECOMESNEARLYIMPOSSIBLETORECONSTRUCTTHELINETHISPROBLE11THESETOFINITIALORIENTATIONSOFTHEDIFFERENTIALLINEELEMENTSCOMPRISINGTHEINTERFACENEEDTOBESPECIFIEDFORAVERTICALINTERFACEPERPENDICULARTOTHEMOVINGPLATE0,L,ANDFORAHORIZONTALINTERFACEPARALLELTOTHEMOVINGPLATEL,0,FORALLTHELINEELEMENTSTHEEVALUATIONOFTHEINTEGRALINEQ11ISRELATIVELYSIMPLEASITISOVERTHEINITIALCONFIGURATIONTHEAPPROACHUSEDHERECANBECARRIEDOUTTOARBITRARILYLARGESTRETCHRATIOSINORDERTOAPPLYEQ11,AMATHEMATICAFIGURE6COMPARISONOFSTREAMLINESFORRECTANGULARCAVITYFLOWOBTAINEDUSINGTHESFTANDEQ12FORW/H15HOWEVER,INUSINGEQ1INCONJUNCTIONWITHEQ11TODETERMINELT,ASSUMPTIONSARENECESSARYREGARDINGTHECHANGESINORIENTATIONANDDEFORMATIONUNDERGONEBYAMATERIALELEMENTINMOVINGTOITSCOMPLEMENTARYLOCATIONHOWEVER,COMPUTATIONSINDICATETHATTHEMIXINGACHIEVEDISEXTREMELYSENSITIVETOTHEASSUMEDCHANGEINORIENTATIONATTHEFLIGHTSITISTHEREFOREDESIRABLETODEVELOPAMATHEMATICALDESCRIPTIONOFTHEFLOWFIELDTHATDOESNOTENTAILSUCHARBITRARYASSUMPTIONSWHILEANUMERICALWHERE,,ANDAREFUNCTIONSONLYOFTHECAVITYASPECTRATIO,DEFINEDINEQA22EVENTHOUGHTHESEEQUATIONSSATISFYTHEBOUNDARYCONDITIONONTHEVELOCITYATTHEMOVINGPLATEONLYINTHEMEANTHESTREAMLINESCALCULATEDUSINGTHEMAREINGOODAGREEMENT,FORLARGEASPECTRATIOS,WITHTHOSEOBTAINEDBYMOREACCURATENUMERICALMETHODSPANANDACRIVOS,1967ALSO,THEMAXIMUMANDMINIMUMCOORDINATESOFTHESTREAMLINESCOINCIDEALMOSTEXACTLYWITHTHELOCATIONOFTHECORRESPONDINGCOMPLEMENTARYPLANTSOFTHESFTFIGURE6THERELATIVESTRETCHEXPERIENCEDBYANINITIALLYVERTICALINTERFACE,CALCULATEDUSINGEQ11AND12,ISSHOWNINFIGURE7FORTWODIFFERENTASPECTSRATIOSTHEASPECTRATIOHASONLYASMALLINFLUENCEONTHERELATIVESTRETCHOFTHEINTERFACETHEPERIODOFOSCILLATIONOFTHECURVESABOUTAMONOTONICALLYINCREASINGMEANVALUEISAPPROXIMATELYEQUALTO,ACHARACTERISTICRECIRCULATIONTIMETHEPERIODICOSCILLATIONCANBESEENMORECLEARLYINFIGURE8,WHERETHESPECIFICRATEOFSTRETCHINGOFTHEINTFIGURE7RELATIVESTRETCHOFINTERFACEINRECTANGULARCAVITYFLOWASAFUNCTIONOFTHECHANNELASPECTRATIO,CALCULATEDWITHTHEVELOCITYFIELDOFEQ12,FORANINITIALLYVERTICALINTERFACEPERPENDICULARTOTHEMOVINGPLATEDIVIDINGCAVITYINTOEQUALVOLUMESFIGURE8NONDIMENSIONALIZEDSPECIFICRATEOFSTRETCHINGOFINTERFACEINRECTANGULARCAVITYFLOWW/H15,INITIALLYVERTICALINTERFACEFIGURE9INFLUENCEOFINITIALORIENTATIONONRELATIVESTRETCHOFINTERFACEINRECTANGULARCAVITYFLOWW/H15THEINFLUENCEOFTHEINITIALORIENTATIONOFTHEINTERFACEONTHENORMALIZEDINTERFACELENGTHISSHOWNINFIGURE9THEAPPARENTSENSITIVITYOFTHEMIXINGLEVELTOTHEINITIALORIENTATIONISANARTIFACTOFCHOICEOFCOORDINATESINFIGURE9WHENTHEACTUALAMOUNTOFINTERFACIALAREAINEACHCASEISCALCULATED,THEDEPENDENCEONTHEINITIALORIENTATIONISFOUNDTOBEVERYSMALLTHEREASONFORTHISCANBESEENINFIGURE8,WHERETHEINITIALLARGEDIFFERENCESBETWEENANINITIALLYVERTICALINTERFACEFIGURE10CHANGEINELEVATIONAANDORIENTATIONBOFADIFFERENTIALMATERIALELEMENTINTRAVELINGALONGASTREAMLINEINRECTANGULARCAVITYFLOW,CALCULATEDWITHTHEVELOCITYFIELDOFEQ12FISTHEANGLEBETWEENTHENORMALTOTHEMATERIALPLANEANDTHEAXISFIGURE11COMPARISONOFINTERFACESTRETCHINGINRECTANGULARCAVITYFLOWPREDICTEDBYTHESFTWITHTHATPREDICTEDUSINGTHEFLOWFIELDOFEQ12─,W/H15,INITIALLYVERTICALINTERFACE13WHILETHEUSEOFTHEVELOCITYFIELDGIVENBYEQ12INTHEANALYSISOFMIXINGINTHEEXTRUDERINVOLVESNOADDITIONALCONCEPTUALDIFFICULTY,THECOMPUTATIONALEFFORTISCONSIDERABLYINCREASEDCOMPAREDWITHTHESFTHENCEITISUSEFULTODETERMINEWHETHERINFORMATIONOBTAINEDWITHTHISFLOWFIELDREGARDINGTHECHANGEINORIENTATIONOFTHEFLUIDELEMENTSNEARTHEFLIGHTSCANBEINCORPORATEDINTOMIXINGCALCULATIONSUSINGTHESFTWITHSATISFACTORYRESULTSFIGURE10SHOWSATYPICALPLOTOFTHECHANGEFIGURE12INFLUENCEOFCAVITYASPECTRATIOONSTRETCHINGOFANINITIALLYVERTICALINTERFACEINRECTANGULARCAVITYFLOWASPREDICTEDUSINGTHESFTTHEDEFORMATIONOFANINITIALLYVERTICALINTERFACECALCULATEDUSINGTHESFT,WITHTHEFLUIDELEMENTSROTATEDTHROUGHATTHEFLIGHTS,ISCOMPAREDTOTHATCALCULATEDUSINGEQ12,INFIGURE11NUMERICALLYTHETWOCURVESAREINGOODAGREEMENTHOWEVER,THEPERIODOFTHEOSCILLATIONOBTAINEDUSINGTHESFTISMORETHANTHREETIMESTHATOBTAINEDUSINGEQ12ANDISAPPROXIMATELYINAGREEMENTWITHTHEVALUEOFTHEREDISTRIBUTIONTIMEDEFINEDBYSHEARER1973ASTHETIMEREQUIREDTODISPLACEFLUIDCOM14THEAGREEMENTBETWEENTHEMIXINGPREDICTIONSFORANINITIALLYVERTICALINTERFACEUSINGTHESETWODIFFERENTFLOWFIELDS,EVENFORTHERELATIVELYLARGESTRETCHRATIOSSHOWNINFIGURE11,SEEMSRATHERSURPRISINGASTHESFTPREDICTSNODEFORMATIONOFAHORIZONTALINTERFACE,ANDALARGEPORTIONOFTHEINTERFACEISNEARLYHORIZONTALATTHESELARGESTRETCHRATIOSHOWEVER,FORFINITETIMESTHEINTERFACEISNEVERPERFECTLYHORIZONTAL,ANDTHESFTPREDICTSASMALLBUTFINITESTRETCHINAGREEMENTWITHTHETHEWEAKDEPENDENCEOFTHEMIXINGACHIEVEDONTHECHANNELASPECTRATIOPREDICTEDUSINGEQ12ISCONFIRMEDUSINGTHESFTFIGURE12THESFTWITHTHEROTATIONOFTHEMATERIALELEMENTSATTHEFLIGHTSISTHUSSEENTODUPLICATETHEPRINCIPALFEATURESOFMIXINGINTHERECTANGULARCAVITYFLOWASPREDICTEDUSINGEQ12,ANDITSUSEINTHEANALYSISOFMIXINGINTHETHREEDIMENSIONALEXTRUDERFLOWISFAVOREDOVEREQ12BECAUSEOFITSRELATIVESIMPLICITYCOMPARISONOFTHETHEORETICALPREDICTIONSWITHEXPE
下載積分: 5 賞幣
上傳時(shí)間:2024-05-20
頁數(shù): 17
大小: 1.96(MB)
子文件數(shù):