版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、* Corresponding author.Finite Elements in Analysis and Design 37 (2001) 97}106Numerical implementation of temperature and creep in mass concreteYong Wu, Ronaldo Luna*Department of Civil Engineering, University of Missour
2、i-Rolla, 1870 Miner Circle, Rolla, MO 65409, USAAbstractMass concrete generates internal heat during the hydration period that occurs soon after casting. Added to these internal heat changes are the environmental conditi
3、ons that the structure is subjected to during its design life. These thermal changes in the material a!ect the elastic and creep properties of the material, and in turn, the stress “elds within the structure. The numeric
4、al implementation of these factors is illustrated in a three-dimensional “nite element program that simulates the construction process of mass. The mathemat- ical formulation, the numerical implementation and other imple
5、mentation details are presented herein. The temperature and stress variation of a concrete block was analyzed and results show that temperature plays an important role in concrete structures. ? 2001 Elsevier Science B.V.
6、 All rights reserved.Keywords: FEM; Mass concrete; Thermal stresses; Creep; Numerical method1. IntroductionThe design and construction of mass concrete structures involves solving the problem of thermal stresses and temp
7、erature control. The material temperature changes due to two factors: (1) the internal hydration of concrete and (2) the environmental boundary conditions. Temperature not only in#uences the elastic modulus and creep pro
8、perties of concrete, but it also produces thermal stresses. The temperature increase accelerates the initial elastic modulus of concrete. The creep rate is also increased with higher temperature and the creep strain is e
9、nlarged [1,2]. Therefore, the elastic modulus and creep variations at di!erent locations within the mass concrete structures are all a function of temperature and which in turn is a function of time. This requires extend
10、ing the analysis into another dimension, time. This spatio-temporal problem requires the modi“cation of material properties with time, and if construction is being simulated, changes in gravity dead load0168-874X/01/$- s
11、ee front matter ? 2001 Elsevier Science B.V. All rights reserved. PII: S 0 1 6 8 - 8 7 4 X ( 0 0 ) 0 0 0 2 2 - 6On boundary C?, convective-type condition is applied. This condition is when there are changes in temperatur
12、e along that boundary:?? ?¹?x l?#?? ?¹?y l?#?? ?¹?z l?“!?(¹!¹?), (5)where ¹ is the transient temperature, ? is the adiabatic temperature rise of concrete, ¹? is the initial temperature,
13、 n is the outer normal of the boundary, ??, ??, ?? are the thermal conductivities for each direction, ? is the surface exothermic coe$cient, ¹? is the temperature of the bounding #uid, and l?, l?, l? are direction c
14、osines of the external normal to the boundary. The above problem can be solved in 3D using the “nite element method, the equations for “nite element method are listed as follows:?H# 2?tP??¹??#?H! 2?tP??¹?????#?
15、Q?????#?Q??“0, (6)whereH??“??h? ??“?? ????? ?a? ?N? ?x?N? ?x #a? ?N? ?y?N? ?y #a? ?N? ?z?N? ?z ? dx dy dz,P??“??p? ??“?? ?????N?N? dx dy dz,Q??“??q? ?“???!????????t N? dx dy dz!????? M ¹?N? ds#?????? M N?[N?N?2] ds?
16、?¹? ¹? ???.Therefore, if the temperature at time t!?t is known, then the temperature at time t can be calculated, since the initial temperature is known, the temperature at any time can be calculated.3. Creep s
17、tress with temperature e4ectsIn creep analysis, the most widely used models are the CEB-FIP Model [3]; the American Concrete Institute (ACI) Model [4]; the Bazant and Panula's (BP) Model [5] and the ExponentialY. Wu,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯--大體積混凝土溫度和徐變的數(shù)值實(shí)現(xiàn)(原文).pdf
- 外文翻譯--大體積混凝土溫度和徐變的數(shù)值實(shí)現(xiàn)(原文).pdf
- 外文翻譯--大體積混凝土溫度和徐變的數(shù)值實(shí)現(xiàn)
- 外文翻譯--大體積混凝土溫度和徐變的數(shù)值實(shí)現(xiàn)
- 外文翻譯--大體積混凝土溫度和徐變的數(shù)值實(shí)現(xiàn)(譯文)
- 外文翻譯--大體積混凝土溫度和徐變的數(shù)值實(shí)現(xiàn)(譯文).doc
- 外文翻譯--大體積混凝土溫度和徐變的數(shù)值實(shí)現(xiàn)(譯文).doc
- 大體積混凝土溫度裂縫控制
- 大體積混凝土溫度計(jì)算
- 大體積混凝土溫度應(yīng)力計(jì)算
- 淺談大體積混凝土溫度裂縫控制
- 大體積混凝土溫度裂縫控制技術(shù)
- 有效控制大體積混凝土溫度裂縫
- 大體積混凝土溫度監(jiān)控的研究.pdf
- 大體積承臺(tái)混凝土溫度裂縫控制
- 大體積混凝土溫度裂縫控制研究.pdf
- 大體積混凝土溫度裂縫控制及分析
- 大體積混凝土溫度裂縫的成因與控制
- 澆筑溫度對(duì)大體積混凝土溫度應(yīng)力的影響
- 大體積混泥土畢業(yè)論文-大體積混凝土溫度裂縫控制
評(píng)論
0/150
提交評(píng)論