版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、Surface and Coatings Technology 148 (2001) 171–1780257-8972/01/$ - see front matter ? 2001 Elsevier Science B.V . All rights reserved. PII: S0257-8972?01.01336-6Electrodeposition and sliding wear resistance of nickel com
2、posite coatings containing micron and submicron SiC particlesI. Garcia *, J. Fransaer , J.-P. Celis a,b, a aKatholieke Universiteit Leuven, Department MTM, Kasteelpark Arenberg 44, B-3001 Leuven, Belgium aNational Center
3、 for Metallurgical Research CENIM-CSIC, Department of Corrosion and Protection, Av. Gregorio del Amo 8, 28040 Madrid, bSpainReceived 1 March 2001; accepted 21 June 2001AbstractSiC particles of three different sizes, name
4、ly 5, 0.7 and 0.3 mm, were codeposited with nickel from Watts’ solutions. It was found that for a given number density of particles in the plating solution, the number density of particles in the coating increases with d
5、ecreasing particle size. The friction and wear behavior of these composite coatings was evaluated in uni- and bi-directional sliding tests against corundum balls. The best sliding wear resistance was obtained with Ni–SiC
6、 composite coatings containing 4–5 vol.% submicron SiC particles. ? 2001 Elsevier Science B.V . All rights reserved.Keywords: Electrodeposition; Composites; Wear; Nickel; SiC1. IntroductionElectrodeposited composite coat
7、ings consist of a metal or alloy matrix containing a dispersion of second phase particles w1–3x. These particles can be hard oxide or carbide particles, such as Al O , SiC, TiO , WC, SiO 2 3 2 2 or diamond, a solid lubri
8、cant, such as PTFE, graphite or MoS , or even liquid-containing microcapsules w4x to 2 improve wear resistance andyor to reduce friction. Electroplated composite coatings containing micron- sized particles are used as we
9、ar-resistant coatings w5–7x, e.g. nickel–SiC in car engines w1,8–10x. With the increasing availability of nanoparticles, there is a grow- ing interest in the electrolytic and electroless codeposi- tion of nanoparticles w
10、11x. The major challenges of the codeposition of nanoparticles seem to be the codeposi- tion of a sufficient number of particles, and avoiding the agglomeration of particles suspended in the plating solutions.* Correspon
11、ding author. Tel.: q34-1-553-8900; fax: q34-1-534- 7425. E-mail address: igarcia@cenim.csic.es (I. Garcia).In this work, the electrolytic codeposition of micron and submicron SiC particles from nickel Watts’ solu- tions,
12、 and the sliding wear resistance of such nickel composite coatings are investigated. The effect of par- ticle size and number of particles suspended in the plating solution on the number of codeposited particles is repor
13、ted. The codeposition results and a model based on the number density of particles codeposited are discussed. The effect of particle size on the codeposition process of micron- and submicron-sized non-Brownian particles
14、is clarified. The effect of codeposited submi- cron particles on the wear resistance of composite Ni– SiC coatings is discussed.2. ExperimentalThe plating solution used was a standard nickel Watts’ solution. The composit
15、ion of the plating solution and the plating parameters are given in Table 1. SiC particles with a mean diameter of 0.3 (BSC-21C, Performance Ceramics, Japan), 0.7 (BS 0.7, Elektroschmelzwerk Kempten, Germany) and 5 mm (E
16、110 ?4000, Norton, Norway) were used. All particles were used as received.173 I. Garcia et al. / Surface and Coatings Technology 148 (2001) 171– 178Fig. 2. Volumetric wear factor under uni-directional sliding on com- pos
17、ite Ni–SiC coatings containing different vol.% SiC particles of three different sizes. Data for pure electrolytic nickel are also given (ED nickel reference).Fig. 3. Volumetric wear factor under bi-directional sliding on
18、 com- posite Ni–SiC coatings containing different vol.% SiC particles of three different sizes. Data for pure electrolytic nickel are also given (ED nickel reference).position is obtained with 0.7-mm particles. Quite une
19、x- pectedly w13x, the 0.3-mm SiC particles codeposit more than the 0.7-mm particles. A possible reason could be the difference in the surface condition of these SiC particles obtained from different producers. Another re
20、ason could be the agglomeration of the 0.3-mm parti- cles in the plating solution. The wear tracks on the composite Ni–SiC coatings after uni- and bi-directional sliding tests have a black appearance, and show scratches
21、parallel to the direction of motion. Such scratches are typical for abrasive wear. For all Ni–SiC composite coatings tested, the coefficient of friction is approximately 0.5 during the first few sliding cycles. After the
22、 running-in phase, the coefficient of friction of nickel coatings containing 0.7- or 0.3-mm SiC particles is approximately 0.29. That coefficient of friction is lower than the value of 0.34 observed on nickel coatings co
23、ntaining 5-mm SiC particles at a comparable volume percent of codeposited particles. On the other hand, for each SiC particle size investigated, the coefficient of friction increases with increasing volume percent of SiC
24、 particles in the coatings, from approximately 0.34 to 0.47 in the case of 5-mm SiC particles, and from 0.28 to 0.30 in the case of 0.7-mm particles.The wear loss on Ni–SiC composite coatings contain- ing SiC particles o
25、f different sizes, after sliding against corundum balls in uni- and bi-directional wear tests, is shown in Figs. 2 and 3, respectively. The volumetric wear loss on pure nickel coatings and composite Ni– SiC coatings in u
26、ni-directional sliding wear tests is approximately two orders of magnitude lower than that noted in bi-directional sliding tests. This is consistent with sliding wear data obtained on hard ceramic coat- ings, such as TiN
27、, showing a much lower wear rate under uni- than under bi-directional sliding test condi- tions w14x. However, under uni-directional sliding, com- posite nickel coatings containing 5-mm SiC particles exhibit a lower wear
28、 resistance with increasing amounts of SiC than pure nickel coatings (referred to as ED nickel reference in Fig. 2). On the contrary, composite nickel coatings containing 0.3- or 0.7-mm SiC particles wear less in uni-dir
29、ectional sliding wear tests than pure nickel, and the best results are obtained with approxi- mately 4 vol.% of 0.7-mm SiC particles. Under bi- directional sliding, the volumetric wear loss on all the composite Ni–SiC co
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 化學(xué)工程與工藝外文翻譯--含微米和亞微米sic顆粒的復(fù)合鍍鎳層的電沉積和滑動耐磨性
- 化學(xué)工程與工藝外文翻譯--含微米和亞微米SiC顆粒的復(fù)合鍍鎳層的電沉積和滑動耐磨性(英文).pdf
- 化學(xué)工程與工藝外文翻譯--含微米和亞微米sic顆粒的復(fù)合鍍鎳層的電沉積和滑動耐磨性
- 化學(xué)工程與工藝外文翻譯--含微米和亞微米sic顆粒的復(fù)合鍍鎳層的電沉積和滑動耐磨性
- 化學(xué)工程與工藝外文翻譯--含微米和亞微米SiC顆粒的復(fù)合鍍鎳層的電沉積和滑動耐磨性.doc
- 化學(xué)工程與工藝外文翻譯--含微米和亞微米SiC顆粒的復(fù)合鍍鎳層的電沉積和滑動耐磨性(英文).pdf
- 化學(xué)工程與工藝外文翻譯--含微米和亞微米SiC顆粒的復(fù)合鍍鎳層的電沉積和滑動耐磨性.doc
- NI-P-SIC-CNTS化學(xué)復(fù)合鍍工藝及鍍層耐磨性研究.pdf
- 鎳硼-微米-納米復(fù)合化學(xué)鍍工藝及其鍍層性能的研究.pdf
- 微米金顆粒與亞微米硅膠顆粒的制備及其在毛細(xì)管液相色譜和電色譜中的應(yīng)用.pdf
- 燃煤亞微米顆粒的形成和團聚機制的研究.pdf
- 亞微米和深亞微米IC中的ESD保護結(jié)構(gòu)研究.pdf
- 化學(xué)工程與工藝 外文翻譯--pvb防潮性與疏水性的效應(yīng)
- 化學(xué)工程與工藝 外文翻譯--pvb防潮性與疏水性的效應(yīng)
- Ni-P化學(xué)鍍和復(fù)合鍍層耐磨性及其結(jié)合力的研究.pdf
- 高頻脈沖電沉積鎳鈷碳化硅耐蝕性耐磨性的研究.pdf
- 化學(xué)溶液法制備ZnO亞微米和微米棒及其發(fā)光特性研究.pdf
- 化學(xué)工程與工藝 外文翻譯--pvb防潮性與疏水性的效應(yīng)(中文)
- 化學(xué)工程與工藝外文文獻(xiàn)翻譯---砷在環(huán)境中的生化特性(英文)
- 化學(xué)工程與工藝 外文翻譯--PVB防潮性與疏水性的效應(yīng)(中文).doc
評論
0/150
提交評論