2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、LargeScaleMachineLearningatTwitterJimmyLinAlekKolczTwitterInc.ABSTRACTThesuccessofdatadrivensolutionstodifficultproblemsalongwiththepingcostsofstingprocessingmassiveamountsofdatahasledtogrowinginterestinlargescalemachine

2、learning.ThispaperpresentsacasestudyofTwitter’sintegrationofmachinelearningtoolsintoitsexistingHadoopbasedPigcentricanalyticsplatfm.Webeginwithanoverviewofthisplatfmwhichhles“traditional”datawarehousingbusinessintelligen

3、cetasksftheganization.TheceofthiswkliesinrecentPigextensionstoprovidepredictiveanalyticscapabilitiesthatincpatemachinelearningfocusedspecificallyonsupervisedclassification.Inparticularwehaveidentifiedstochasticgradientde

4、scenttechniquesfonlinelearningensemblemethodsasbeinghighlyamenabletoscalingouttolargeamountsofdata.Inourdeployedsolutioncommonmachinelearningtaskssuchasdatasamplingfeaturegenerationtrainingtestingcanbeaccomplisheddirectl

5、yinPigviacarefullycraftedloadersstagefunctionsuserdefinedfunctions.ThismeansthatmachinelearningisjustanotherPigwhichallowsseamlessintegrationwithexistinginfrastructurefdatamanagementschedulingmonitinginaproductionenviron

6、mentaswellasaccesstorichlibrariesofuserdefinedfunctionsthematerializedoutputofothers.CategiesSubjectDes:H.2.3[DatabaseManagement]:LanguagesGeneralTerms:LanguagesKeywds:stochasticgradientdescentonlinelearningensembleslogi

7、sticregression1.INTRODUCTIONHadooptheopensourceimplementationofMapReduce[15]hasemergedasapopularframewkflargescaledataprocessing.Amongitsadvantagesaretheabilitytohizontallyscaletopetabytesofdataonthoussofcommodityservers

8、easytounderstprogrammingsemanticsaPermissiontomakedigitalhardcopiesofallpartofthiswkfpersonalclassroomuseisgrantedwithoutfeeprovidedthatcopiesarenotmadedistributedfprofitcommercialadvantagethatcopiesbearthisnoticethefull

9、citationonthefirstpage.Tocopyotherwisetorepublishtopostonserverstoredistributetolistsrequiresprispecificpermissionafee.SIGMOD’12May20–242012ScottsdaleArizonaUSA.Copyright2012ACM97814503124791205...$10.00.highdegreeoffaul

10、ttolerance.AlthoughiginallydesignedfapplicationssuchastextanalysiswebindexinggraphprocessingHadoopcanbeappliedtomanagestructureddataaswellas“dirty”semistructureddatasetswithinconsistentschemamissingfieldsinvalidvalues.To

11、dayHadoopenjoyswidespreadadoptioninganizationsrangingfromtwopersonstartupstoFtune500companies.Itliesattheceofasoftwarestackflargescaleanalyticsowesalargepartofitssuccesstoavibrantecosystem.FexamplePig[37]Hive[47]provideh

12、igherlevellanguagesfdataanalysis:adataflowlanguagecalledPigLatinadialectofSQLrespectively.HBasetheopensourceimplementationofGoogle’sBigtable[13]providesaconvenientdatamodelfmanagingservingsemistructureddata.Wearealsowitn

13、essingthedevelopmentofhybriddataprocessingapproachesthatintegrateHadoopwithtraditionalRDBMStechniques[134330]promisingthebestofbothwlds.ThevalueofaHadoopbasedstackf“traditional”datawarehousingbusinessintelligencetaskshas

14、alreadybeendemonstratedbyganizationssuchasFacebookLinkedInTwitter(e.g.[2241]).Thisvaluepropositionalsoliesatthecenterofagrowinglistofstartupslargecompaniesthathaveenteredthe“bigdata”game.CommontasksincludeETLjoiningmulti

15、pledisparatedatasourcesfollowedbyfilteringaggregationcubematerialization.Statisticiansmightusethephrasedeivestatisticstodescribethistypeofanalysis.Theseoutputsmightfeedreptgeneratsfrontenddashboardsothervisualizationtool

16、stosupptcommon“rollup”“drilldown”operationsonmultidimensionaldata.Hadoopbasedplatfmshavealsobeensuccessfulinsupptingadhocqueriesbyanewbreedofengineersknownas“datascientists”.ThesuccessoftheHadoopplatfmdrivesinfrastructur

17、edeveloperstobuildincreasinglypowerfultoolswhichdatascientistsotherengineerscanexploittoextractinsightsfrommassiveamountsofdata.Inparticularwefocusonmachinelearningtechniquesthatenablewhatmightbebesttermedpredictiveanaly

18、tics.Thehopeistominestatisticalregularitieswhichcanthenbedistilledintomodelsthatarecapableofmakingpredictionsaboutfutureevents.Someexamplesinclude:IsthistweetspamnotWhatstarratingistheuserlikelytogivetothismovieShouldthe

19、setwopeoplebeintroducedtoeachotherHowlikelywilltheuserclickonthisbanneradThispaperpresentsacasestudyofhowmachinelearningtoolsareintegratedintoTwitter’sPigcentricanalyticsstackfthetypeofpredictiveanalyticsdescribedabove.F

20、ocus793encodeAretherebestpracticestoadoptWhilethispaperdoesnotdefinitivelyanswerthesequestionsweofferacasestudy.SinceTwitter’sanalyticsstackconsistsmostlyofopensourcecomponents(HadoopPigetc.)muchofourexperienceisgenerali

21、zabletootherganizations.3.TWITTER’SANALYTICSSTACKAlargeHadoopclusterliesattheceofouranalyticsinfrastructurewhichservestheentirecompany.DataiswrittentotheHadoopDistributedFileSystem(HDFS)viaanumberofrealtimebatchprocesses

22、inavarietyoffmats.Thesedatacanbebulkexptsfromdatabasesapplicationlogsmanyothersources.WhenthecontentsofarecdarewelldefinedtheyareserializedusingeitherProtocolBuffers3Thrift.4IngesteddataareLZOcompressedwhichprovidesagood

23、tradeoffbetweencompressionratiospeed(see[29]fmedetails).InaHadoopjobdifferentrecdtypesproducedifferenttypesofinputkeyvaluepairsfthemapperseachofwhichrequirescustomcodefdeserializingparsing.Sincethiscodeisbothregularrepet

24、itiveitisstraightfwardtousetheserializationframewktospecifythedataschemafromwhichtheserializationcompilergeneratescodetoreadwritemanipulatethedata.ThisishledbyoursystemcalledElephantBird5whichautomaticallygeneratesHadoop

25、recdreaderswritersfarbitraryProtocolBufferThriftmessages.InsteadofdirectlywritingHadoopcodeinJavaanalyticsatTwitterisperfmedmostlyusingPigahighleveldataflowlanguagethatcompilesintophysicalplansthatareexecutedonHadoop[371

26、9].Pig(viaalanguagecalledPigLatin)providesconciseprimitivesfexpressingcommonoperationssuchasprojectioniongroupjoinetc.Thisconcisenesscomesatlowcost:PigsapproachtheperfmanceofprogramsdirectlywritteninHadoopJava.Yetthefull

27、expressivenessofJavaisretainedthroughalibraryofcustomUDFsthatexposeceTwitterlibraries(e.g.fextractingmanipulatingpartsoftweets).FthepurposesofthispaperweassumethatthereaderhasatleastapassingfamiliaritywithPig.Likemanygan

28、izationstheanalyticswkloadatTwittercanbebroadlydividedintotwocategies:aggregationqueriesadhocqueries.Theaggregationqueriesmaterializecommonlyusedintermediatedatafsubsequentanalysisfeedfrontenddashboards.Theserepresentrel

29、ativelystardbusinessintelligencetasksprimarilyinvolvescansoverlargeamountsofdatatriggeredperiodicallybyourinternalwkflowmanager(seebelow).Runningalongsidetheseaggregationqueriesareadhocqueriese.g.oneoffbusinessrequestsfd

30、ataprototypesofnewfunctionalitiesexperimentsbyouranalyticsgroup.Thesequeriesareusuallysubmitteddirectlybytheuserhavenopredictabledataaccesscomputationalpattern.Althoughsuchjobsroutinelyprocesslargeamountsofdatatheyareclo

31、serto“needleinahaystack”queriesthanaggregationqueries.ProductionanalyticsjobsarecodinatedbyourwkflowmanagercalledOinkwhichschedulesrecurringjobsatfixedintervals(e.g.hourlydaily).Oinkhlesdataflow3:code.pprotobuf4:thrift.a

32、pache.g5kevinweilelephantbirddependenciesbetweenjobsfexampleifjobBrequiresdatageneratedbyjobAthenOinkwillscheduleAverifythatAhassuccessfullycompletedthenschedulejobB(allwhilemakingabestefftattempttorespectperiodicitycons

33、traints).FinallyOinkpreservesexecutiontracesfauditpurposes:whenajobbeganhowlongitlastedwhetheritcompletedsuccessfullyetc.EachdayOinkscheduleshundredsofPigswhichtranslateintothoussofHadoopjobs.4.EXTENDINGPIGTheprevioussec

34、tiondescribesamatureproductionsystemthathasbeenrunningsuccessfullyfseveralyearsiscriticaltomanyaspectsofbusinessoperations.InthissectionwedetailPigextensionsthataugmentthisdataanalyticsplatfmwithmachinelearningcapabiliti

35、es.4.1DevelopmentHistyTobetterappreciatethesolutionthatwehavedevelopeditisperhapshelpfultodescribethedevelopmenthisty.Twitterhasbeenusingmachinelearningsinceitsearliestdays.SummizeatwoyearoldstartupthatTwitteracquiredpri

36、marilyfitssearchproductin2008hadaspartofitstechnologyptfoliosentimentanalysiscapabilitiesbasedinpartonmachinelearning.AftertheacquisitionmachinelearningcontributedtospamdetectionotherapplicationswithinTwitter.Theseactivi

37、tiespredatedtheexistenceofHadoopwhatonemightrecognizeasamoderndataanalyticsplatfm.Sinceourgoalhasneverbeentomakefundamentalcontributionstomachinelearningwehavetakenthepragmaticapproachofusingofftheshelftoolkitswherepossi

38、ble.Thusthechallengebecomeshowtoincpatethirdpartysoftwarepackagesalongwithinhousetoolsintoanexistingwkflow.Mostcommonlyavailablemachinelearningtoolkitsaredesignedfasinglemachinecannoteasilyscaletothedatasetsizesthatouran

39、alyticsplatfmcaneasilygenerate(althoughmedetaileddiscussionbelow).Asaresultweoftenrestedtosampling.Thefollowingdescribesanotuncommonscenario:LikemostanalyticstaskswebeganwithdatamanipulationusingPigontheinfrastructuredes

40、cribedinSection3.TheswouldstreamoverlargedatasetsextractsignalsofinterestmaterializethemtoHDFS(aslabelsfeaturevects).Fmanytasksitwasaseasytogenerateamilliontrainingexamplesasitwastogeneratetenmilliontrainingexamplesme.Ho

41、wevergeneratingtoomuchdatawascounterproductiveasweoftenhadtodownsamplethedatasoitcouldbehledbyamachinelearningalgithmonasinglemachine.ThetrainingprocesstypicallyinvolvedcopyingthedataoutofHDFSontothelocaldiskofanothermac

42、hine—frequentlythiswasanothermachineinthedatacenterbutrunningexperimentsonindividuals’laptopswasnotuncommon.Onceamodelwastraineditwasappliedinasimilarlyadhocmanner.TestdatawerepreparedsampledusingPigcopiedoutofHDFSfedtot

43、helearnedmodel.TheseresultswerethenstedsomewhereflateraccessfexampleinaflatfilethatisthencopiedbacktoHDFSasrecdsedintoadatabaseetc.Therearemanyissueswiththiswkflowthefemostofwhichisthatdownsamplinglargelydefeatsthepointo

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論