版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p><b> 英語(yǔ)翻譯</b></p><p> Options for micro-holemaking</p><p> As in the macroscale-machining world, holemaking is one of the most— if not the most—frequently performed operat
2、ions for micromachining. Many options exist for how those holes are created. Each has its advantages and limitations, depending on the required hole diameter and depth, workpiece material and equipment requirements. This
3、 article covers holemaking with through-coolant drills and those without coolant holes, plunge milling, microdrilling using sinker EDMs and laser drilling. </p><p> Helpful Holes </p><p> Gett
4、ing coolant to the drill tip while the tool is cutting helps reduce the amount of heat at the tool/workpiece interface and evacuate chips regardless of hole diameter. But through-coolant capability is especially helpful
5、when deep-hole microdrilling because the tools are delicate and prone to failure when experiencing recutting of chips, chip packing and too much exposure to carbide’s worst enemy—heat.</p><p> When applying
6、 flood coolant, the drill itself blocks access to the cutting action. “Somewhere about 3 to 5 diameters deep, the coolant has trouble getting down to the tip,” said Jeff Davis, vice president of engineering for Harvey To
7、ol Co., Rowley, Mass. “It becomes wise to use a coolant-fed drill at that point.” </p><p> To prevent those tiny coolant holes from becoming clogged with debris, Davis also recommends a 5μm or finer coolant
8、 filter. </p><p> Another recommendation is to machine a pilot, or guide, hole to prevent the tool from wandering on top of the workpiece and aid in producing a straight hole. When applying a pilot drill, i
9、t’s important to select one with an included angle on its point that’s equal to or larger than the included angle on the through-coolant drill that follows. The pilot drill’s diameter should also be slightly larger. For
10、example, if the pilot drill has a 120° included angle and a smaller diameter than a through-</p><p> Lubricious Chill</p><p> To further aid chip evacuation, Davis recommends applying an
11、oil-based metalworking fluid instead of a waterbased coolant because oil provides greater lubricity. But if a shop prefers using coolant, the fluid should include EP (extreme pressure) additives to increase lubricity and
12、 minimize foaming. “If you’ve got a lot of foam,” Davis noted, “the chips aren’t being pulled out the way they are supposed to be.” </p><p> He added that another way to enhance a tool’s slipperiness while
13、extending its life is with a coating, such as titanium aluminum nitride. TiAlN has a high hardness and is an effective coating for reducing heat’s impact when drilling difficult-to-machine materials, like stainless steel
14、. </p><p> David Burton, general manager of Performance Micro Tool, Janesville, Wis., disagrees with the idea of coating microtools on the smaller end of the spectrum. “Coatings on tools below 0.020" t
15、ypically have a effect on every machining aspect, from the quality of the initial cut to tool life,” he said. That’s because coatings are not thin enough and negatively alter the rake and relief angles when applied to ti
16、ny tools. </p><p> However, work continues on the development of thinner coatings, and Burton indicated that Performance Micro Tool, which produces microendmills and microrouters and resells microdrills, is
17、 working on a project with others to create a submicron-thickness coating. “We’re probably 6 months to 1 year from testing it in the market,” Burton said. </p><p> The microdrills Performance offers are bas
18、ically circuit-board drills, which are also effective for cutting metal. All the tools are without through-coolant capability. “I had a customer drill a 0.004"-dia. hole in stainless steel, and he was amazed he coul
19、d do it with a circuit-board drill,” Burton noted, adding that pecking and running at a high spindle speed increase the drill’s effectiveness. </p><p> The requirements for how fast microtools should rotate
20、 depend on the type of CNC machines a shop uses and the tool diameter, with higher speeds needed as the diameter decreases. (Note: The equation for cutting speed is sfm = tool diameter × 0.26 × spindle speed.)
21、</p><p> Although relatively low, 5,000 rpm has been used successfully by Burton’s customers. “We recommend that our customers find the highest rpm at the lowest possible vibration—the sweet spot,” he said.
22、 </p><p> In addition to minimizing vibration, a constant and adequate chip load is required to penetrate the workpiece while exerting low cutting forces and to allow the rake to remove the appropriate amou
23、nt of material. If the drill takes too light of a chip load, the rake face wears quickly, becoming negative, and tool life suffers. This approach is often tempting when drilling with delicate tools. </p><p>
24、 “If the customer decides he wants to baby the tool, he takes a lighter chip load,” Burton said, “and, typically, the cutting edge wears much quicker and creates a radius where the land of that radius is wider than the
25、chip being cut. He ends up using it as a grinding tool, trying to bump material away.” For tools larger than 0.001", Burton considers a chip load under 0.0001" to be “babying.” If the drill doesn’t snap, premat
26、ure wear can result in abysmal tool life. </p><p> Too much runout can also be destructive, but how much is debatable. Burton pointed out that Performance purposely designed a machine to have 0.0003" T
27、IR to conduct in-house, worst-case milling scenarios, adding that the company is still able to mill a 0.004"-wide slot “day in and day out.” </p><p> He added: “You would think with 0.0003" runout
28、 and a chip load a third that, say, 0.0001" to 0.00015", the tool would break immediately because one flute would be taking the entire load and then the back end of the flute would be rubbing. </p><p
29、> When drilling, he indicated that up to 0.0003" TIR should be acceptable because once the drill is inside the hole, the cutting edges on the end of the drill continue cutting while the noncutting lands on the O
30、D guide the tool in the same direction. Minimizing run out becomes more critical as the depth-to-diameter ratio increases. This is because the flutes are not able to absorb as much deflection as they become more engaged
31、in the workpiece. Ultimately, too much runout causes the tool shank to </p><p> Taking a Plunge </p><p> Although standard microdrills aren’t generally available below 0.002", microendmil
32、ls that can be used to “plunge” a hole are. “When people want to drill smaller than that, they use our endmills and are pretty successful,” Burton said. However, the holes can’t be very deep because the tools don’t have
33、long aspect, or depth-to-diameter, ratios. Therefore, a 0.001"-dia. endmill might be able to only make a hole up to 0.020" deep whereas a drill of the same size can go deeper because it’s designed t</p>
34、<p> Performance offers endmills as small as 5 microns (0.0002") but isn’t keen on increasing that line’s sales. “When people try to buy them, I very seriously try to talk them out of it because we don’t like
35、making them,” Burton said. Part of the problem with tools that small is the carbide grains not only need to be submicron in size but the size also needs to be consistent, in part because such a tool is comprised of fewer
36、 grains. “The 5-micron endmill probably has 10 grains holding the core toget</p><p> He added that he has seen carbide powder containing 0.2-micron grains, which is about half the size of what’s commerciall
37、y available, but it also contained grains measuring 0.5 and 0.6 microns. “It just doesn’t help to have small grains if they’re not uniform.”</p><p> Microvaporization</p><p> Electrical discha
38、rge machining using a sinker EDM is another micro-holemaking option. Unlike , which create small holes for threading wire through the workpiece when wire EDMing, EDMs for producing microholes are considerably more sophis
39、ticated, accurate and, of course, expensive. </p><p> For producing deep microholes, a tube is applied as the electrode. For EDMing smaller but shallower holes, a solid electrode wire, or rod, is needed. “W
40、e try to use tubes as much as possible,” said Jeff Kiszonas, EDM product manager for Makino Inc., Auburn Hills, Mich. “But at some point, nobody can make a tube below a certain diameter.” He added that some suppliers off
41、er tubes down to 0.003" in diameter for making holes as small as 0.0038". The tube’s flushing hole enables creating a hole with </p><p> One such sinker EDM for producing holes as small as 0.00044
42、" (11μm) is Makino’s Edge2 sinker EDM with fine-hole option. In Japan, the machine tool builder recently produced eight such holes in 2 minutes and 40 seconds through 0.0010"-thick tungsten carbide at the hole
43、locations. The electrode was a silver-tungsten rod 0.00020" smaller than the hole being produced, to account for spark activity in the gap. </p><p> When producing holes of that size, the rod, while ro
44、tating, is dressed with a charged EDM wire. The fine-hole option includes a W-axis attachment, which holds a die that guides the electrode, as well as a middle guide that prevents the electrode from bending or wobbling a
45、s it spins. With the option, the machine is appropriate for drilling hole diameters less than 0.005".</p><p> Another sinker EDM for micro-holemaking is the Mitsubishi VA10 with a fine-hole jig attachm
46、ent to chuck and guide the fine wire applied to erode the material. “It’s a standard EDM, but with that attachment fixed to the machine, we can do microhole drilling,” said Dennis Powderly, sinker EDM product manager for
47、 MC Machinery Systems Inc., Wood Dale, Ill. He added that the EDM is also able to create holes down to 0.0004" using a wire that rotates at up to 2,000 rpm. </p><p> Turn to Tungsten </p><p&
48、gt; EDMing is typically a slow process, and that holds true when it is used for microdrilling. “It’s very slow, and the finer the details, the slower it is,” said , president and owner of Optimation Inc. The Midvale, Ut
49、ah, company builds Profile 24 Piezo EDMs for micromachining and also performs microEDMing on a contract-machining basis. </p><p> Optimation produces tungsten electrodes using a reverse-polarity process and
50、 machines and ring-laps them to as small as 10μm in diameter with 0.000020" roundness. Applying a 10μm-dia. electrode produces a hole about 10.5μm to 11μm in diameter, and blind-holes are possible with the company’s
51、 EDM. The workpiece thickness for the smallest holes is up to 0.002", and the thickness can be up to 0.04" for 50μm holes. </p><p> Much of the company’s contract work, which is provided at a shop
52、 rate of $100 per hour, involves microEDMing exotic metals, such as gold and platinum for X-ray apertures, stainless steel for optical applications and tantalum and tungsten for the electron-beam industry. Jorgensen said
53、 the process is also appropriate for EDMing partially electrically conductive materials, such as PCD.</p><p> “The customer normally doesn’t care too much about the cost,” he said. “We’ve done parts where t
54、here’s $20,000 [in time and material] involved, and you can put the whole job underneath a fingernail. We do everything under a microscope.”</p><p> Light Cutting</p><p> Besides carbide and t
55、ungsten, light is an appropriate “tool material” for micro-holemaking. Although most laser drilling is performed in the infrared spectrum, the SuperPulse technology from The Ex One Co., Irwin, Pa., uses a green laser bea
56、m, said Randy Gilmore, the company’s director of laser technologies. Unlike the femtosecond variety, Super- Pulse is a nanosecond laser, and its green light operates at the 532-nanometer wavelength. The technology provid
57、es laser pulses of 4 to 5 nanoseconds i</p><p> In addition, the technology can produce negatively tapered holes, with a smaller entrance than exit diameter, to promote better fuel flow. </p><p&g
58、t; To further enhance the technology’s competitiveness, Ex One developed a patent-pending material that is injected into a hollow-body component to block the laser beam and prevent back-wall strikes after it creates the
59、 needed hole. After laser machining, the end user removes the material without leaving remnants. </p><p> Depending on the application, mechanical drilling and plunge milling, EDMing and laser machining all
60、 have their place in the expanding micromachining universe. “People want more packed into smaller spaces,” said Makino’s Kiszonas.</p><p><b> 微孔的加工方法</b></p><p> 正如宏觀加工一樣,在微觀加工中孔的加
61、工也許也是最常用的加工之一。孔的加工方法有很多種,每一種都有其優(yōu)點(diǎn)和缺陷,這主要取決于孔的直徑、深度、工件材料和設(shè)備要求。這篇文章主要介紹了內(nèi)冷卻鉆頭鉆孔、無(wú)冷卻鉆孔、插銑、電火花以及激光加工微孔的幾種方法。</p><p><b> 易于孔加工的操作</b></p><p> 無(wú)論孔有多大,在加工時(shí)將冷卻液導(dǎo)入到刀尖,這都有助于排屑并能降低刀具和工件表面產(chǎn)生的摩
62、擦熱。尤其是在加工深細(xì)孔時(shí),有無(wú)冷卻對(duì)加工的影響更大,因?yàn)樯罴?xì)孔加工的刀具比較脆弱,再加上刀具對(duì)切屑的二次切削和切屑的堆積會(huì)積累大量的熱,而熱量是碳化物刀具的主要“天敵”,它會(huì)加快刀具的失效速度。</p><p> 當(dāng)使用外冷卻液時(shí),刀具本身會(huì)阻止切削液進(jìn)入切削加工位置?!耙簿褪堑?-5倍的直徑深度后切削液就會(huì)很難流入到刀尖?!?副哈維工具有限公的副總工程師杰夫戴維斯說(shuō),“這時(shí),就應(yīng)該選用帶有內(nèi)冷的鉆頭?!?l
63、t;/p><p> 為了防止這些冷卻液通口被雜物堵塞,戴維斯還推薦在鉆頭上加一5μm孔徑或更加精密的冷卻液濾清器。</p><p> 另外,他還推薦在加工孔時(shí)有必要在工件的上方先加工一個(gè)定心或?qū)蚩?,以防止刀具偏斜,并有助于保證所加工孔的垂直度。當(dāng)選用定心鉆時(shí),應(yīng)使選擇的定心鉆刀尖上的坡口角小于等于其后內(nèi)冷鉆的破口角。定心鉆的直徑還要稍微大一些。例如,如果定心鉆的坡口角為120°
64、,內(nèi)冷卻鉆頭的坡口角為140°,并且定心鉆的直徑小于內(nèi)冷卻鉆的直徑,“在加工時(shí)內(nèi)冷卻鉆的拐角處會(huì)與定心孔干涉而容易脫落,”戴維斯說(shuō),“這將導(dǎo)致鉆頭損壞。”</p><p><b> 潤(rùn)滑及冷卻</b></p><p> 為了更加有助于排屑,戴維斯推薦在金屬加工中用油基金屬切削液代替水基冷卻液,因?yàn)橛途哂休^高的潤(rùn)滑效果。但是如果車(chē)間更加青睞于使用水基冷卻液
65、,液體中應(yīng)該包括EP(極壓)添加劑,增加潤(rùn)滑和減少發(fā)泡?!叭绻a(chǎn)生很多泡沫,”戴維斯說(shuō),“切屑就不會(huì)按著預(yù)定的方式排出?!?lt;/p><p> 他還補(bǔ)充到,另一種提高潤(rùn)滑并且提高刀具壽命方法是刀具涂層,例如氮鋁化鈦(TiAlN)。TiAlN具有很高的硬度,當(dāng)鉆削像不銹鋼這樣的難加工金屬材料時(shí),帶有TiAlN涂層的刀具能有效地減少熱量沖擊。</p><p> 威斯康星州簡(jiǎn)斯維爾微型刀具公司
66、的總經(jīng)理大衛(wèi)伯頓,對(duì)微加工刀具的小批量涂層有不同的看法,他說(shuō):“對(duì)直徑小于0.020英寸的刀具涂層,會(huì)對(duì)從刀具的加工質(zhì)量到刀具的壽命等每一加工方面都產(chǎn)生消極影響”。因?yàn)樾〉毒叩耐繉硬荒軌蜃龅米銐虮?,這樣涂層就會(huì)改變刀具的前角和后角,從而不利于加工。</p><p> 不過(guò),更薄涂層的開(kāi)發(fā)正在繼續(xù),伯頓表示,現(xiàn)在微型刀具公司除了生產(chǎn)銷(xiāo)售微型銑刀、刨刀和微型鉆頭外,還在和其他公司合作致力于開(kāi)發(fā)一種亞細(xì)微涂層。伯頓說(shuō)
67、:“我們計(jì)劃這種圖層刀具會(huì)在六個(gè)月到一年的時(shí)間內(nèi)上市?!?lt;/p><p> 微型鉆公司的產(chǎn)品主要是用于電路板加工的鉆頭,但也可用于有效的切削金屬。所有的刀具都沒(méi)帶有內(nèi)冷能力?!拔矣幸粋€(gè)客戶想要在不銹鋼上面鉆一個(gè)0.004英寸的孔,他當(dāng)時(shí)非常驚訝這能用一把加工電路板的鉆頭完成?!辈D還補(bǔ)充說(shuō),“采用啄式進(jìn)給并選擇高的主軸速度可以提高鉆頭的效率?!?lt;/p><p> 微加工刀具要使用多高的
68、轉(zhuǎn)速,這主要依賴(lài)于車(chē)間所使用的數(shù)控機(jī)床和刀具的直徑,所需的轉(zhuǎn)速隨刀具直徑的增加而加快(注:切削速度公式為 sfm=刀具直徑×0.26×主軸轉(zhuǎn)速)。</p><p> 雖然相對(duì)較低,但伯頓的客戶也成功地應(yīng)用過(guò)每分鐘5000轉(zhuǎn)的加工速度。伯頓說(shuō):“我們建議我們的用戶找到一個(gè)震動(dòng)最小的最高轉(zhuǎn)速——最佳加工速度?!?lt;/p><p> 為了減少震動(dòng),在用小的切削力通過(guò)刀具的
69、前傾面去除適當(dāng)?shù)慕饘贂r(shí),應(yīng)使?jié)B入到工件中的切削載荷連續(xù)而充足,如果鉆頭承受的切削載荷太輕,刀具前傾面的磨損速度就會(huì)加快,刀具變鈍,從而影響刀具的使用壽命。這在加工細(xì)孔時(shí)應(yīng)更加注意。</p><p> “用戶們常常使用較輕的切削載荷來(lái)延長(zhǎng)刀具的使用壽命,”伯頓說(shuō), “這恰恰會(huì)加快切削刃的磨損,并在刀刃寬出切屑的位置形成圓弧,刀具會(huì)變得像磨削工具一樣把材料強(qiáng)行除掉,只能成為報(bào)廢刀。”伯頓認(rèn)為,直徑大于0.001英寸
70、的刀具切削抗力小于0.0001″時(shí),切削力抗力就已經(jīng)太小了,即使刀具不會(huì)斷裂,過(guò)早的摩擦也會(huì)導(dǎo)致刀具壽命縮短。</p><p> 太多的跳動(dòng)也可能是破壞性的,但是影響有多少還值得商榷。伯頓指出,公司打算設(shè)計(jì)一臺(tái)具有0.0003英寸偏差的機(jī)器,用以建立室內(nèi)最壞情況下的銑削場(chǎng)景,還將能夠加工0.004英寸寬的槽,“這遲早會(huì)實(shí)現(xiàn)的”。</p><p> 他還補(bǔ)充:“你還可以試想一下0.000
71、3英寸的跳動(dòng)和只有正常水平三分之一的切削載荷,也就是說(shuō)0.0001″到0.00015,刀具將會(huì)立即破壞,因?yàn)榈毒叩囊粋€(gè)排屑槽會(huì)承受所有的載荷,然后排屑槽的后面就會(huì)破壞。”</p><p> 他還指出,在鉆孔時(shí),小于0.0003英寸的偏差是可接受的,因?yàn)楫?dāng)鉆頭深入孔內(nèi)時(shí),鉆頭末端的切削刃在外圓柱非加工表面的引導(dǎo)下會(huì)繼續(xù)切削。偏差的最小值隨著深度和直徑比值的增加而迅速減少,這是因?yàn)楫?dāng)鉆頭越深入工件,排屑槽的吸震能力
72、越差。最后強(qiáng)烈的跳動(dòng)導(dǎo)致刀柄繞著刀具的軸線轉(zhuǎn)動(dòng),而刀尖還仍然保持穩(wěn)定,從而產(chǎn)生使刀具最終斷裂的集中應(yīng)力。</p><p><b> 插銑</b></p><p> 雖然通常沒(méi)有直徑小于0.002英寸的標(biāo)準(zhǔn)微型鉆頭,但可以用微型端銑刀來(lái)“沖”孔?!懊慨?dāng)人們想加工一個(gè)小于0.002英寸的孔時(shí),他們可以選用端銑刀,效果也不錯(cuò)。”伯頓說(shuō)到。但是這樣加工的孔不能太深,因?yàn)榈?/p>
73、具體不長(zhǎng),沒(méi)有大的深度直徑比率。因此一把直徑為0.001英寸的端銑刀只能加工最深0.020英寸的孔,而同樣直徑的鉆頭可以加工得更深,因?yàn)殂@頭的設(shè)計(jì)使載荷全部作用在刀尖上,進(jìn)而傳到刀柄上被吸收。</p><p> 市面上能提供最小5微米(0.0002英寸)的端銑刀,但是并沒(méi)有大量銷(xiāo)售?!爱?dāng)人們想買(mǎi)這樣的刀具時(shí),我非常嚴(yán)肅的試著說(shuō)服他們不要買(mǎi),因?yàn)槲覀儾幌矚g制作這樣的刀具?!辈D說(shuō)到。這種刀具的主要問(wèn)題是,不但這種
74、刀具的硬質(zhì)合金齒處于亞細(xì)微尺寸,而且當(dāng)一把刀有多個(gè)齒時(shí),每個(gè)齒的尺寸還要保持一致。伯頓道:“一把直徑5微米的端銑刀在其基體上就夾持大約10個(gè)刀齒?!?lt;/p><p> 他還補(bǔ)充說(shuō),他曾經(jīng)看到過(guò)帶有0.2微米齒的粉末冶金硬質(zhì)合金刀具,這是商業(yè)上能提供齒的尺寸的一半,但它還包括0.5和0.6微米的小齒。“如果齒的尺寸不統(tǒng)一,小齒是發(fā)揮不出作用的”。</p><p><b> 墜電
75、火花加工</b></p><p> 應(yīng)用墜電火花的電火花加工是另一種微孔加工方式。這不同于將放電導(dǎo)線穿過(guò)工件的電火花加工方式,應(yīng)用墜電火花加工的微孔更加精密和精確,但同時(shí)花費(fèi)也會(huì)很高。</p><p> 墜電火花加工深細(xì)孔時(shí),要用一個(gè)導(dǎo)電管作為電極。加工小而淺的孔時(shí),需要用到一根導(dǎo)線或棒,“我們盡量用導(dǎo)管做電極,”位于密歇根州的牧野公司總經(jīng)理 Jeff Kiszonas說(shuō)道
76、,導(dǎo)管的排渣孔能使加工的孔有大的深度直徑比,并能夠在加工中將孔底的熔渣排除孔外。他又補(bǔ)充道“但是另一方面,沒(méi)人能制出小于一定直徑的導(dǎo)管?!币恍┕?yīng)商能提供直徑小于0.003英寸的導(dǎo)管可以加工出0.0038英寸的孔。。</p><p> 現(xiàn)在Makino公司生產(chǎn)的雙邊墜電火花加工設(shè)備能夠加工出0.00044英寸(11微米)的微孔,這種設(shè)備主要用于孔的精加工。最近,在日本這種機(jī)床的開(kāi)發(fā)人員用兩分鐘加工了八個(gè)這樣的孔
77、,并用四十秒穿透了0.0010英寸厚的碳化鎢板。加工電極為一個(gè)銀鎢合金棒,由于電火花加工中在電極和工件間存在放電間隙,所以,所加工孔的直徑會(huì)比電極直徑大0.00020英寸。</p><p> 另一種墜電電火花加工微型孔機(jī)床是三菱VA10機(jī)床,它用精加工孔的鉆模附件來(lái)裝卡和引導(dǎo)精制導(dǎo)線來(lái)腐蝕金屬。伊利諾伊州的MC機(jī)械系統(tǒng)公司產(chǎn)品加工經(jīng)理丹尼斯德利說(shuō):“這是一種標(biāo)準(zhǔn)的電火花加工,但是借助于安裝在機(jī)器上的附件,我們同
78、樣可以加工細(xì)孔?!彼€補(bǔ)充說(shuō)在電火花加工中用2000轉(zhuǎn)/分的轉(zhuǎn)速旋轉(zhuǎn)的導(dǎo)線可以加工小于0.0004英寸的孔。</p><p><b> 鎢電極電火花加工</b></p><p> 電火花加工是一種典型的慢加工,加工微孔時(shí)這表現(xiàn)得也很明顯。“電火花加工非常慢,并且隨著加工精度的增加而減慢” Midvale公司( Midvale公司是一個(gè)位于猶他州,主要生產(chǎn)24伏低壓
79、電火花加工設(shè)備和基于精密電火花加工的公司)的總裁迪恩約根森說(shuō)。</p><p> 鎢電極的生產(chǎn)是應(yīng)用反極性接法,經(jīng)機(jī)械加工、研磨加工使之直徑達(dá)到10微米、粗糙度為0.000020英寸。應(yīng)用10微米的電極能加工10.5到11微米的孔,并能加工盲孔。用于加工最小孔的最大工件厚度為0.002英寸,加工50微米直徑的孔時(shí)工件的厚度能達(dá)到0.004英寸。</p><p> 車(chē)間里的多數(shù)精細(xì)加工為
80、100美元/時(shí),包括特殊金屬的電火花加工,如:X射線加工金和鉑、光加工不銹鋼、陰極射線加工鉭和鎢。約根森說(shuō)道,電火花加工還適合加工半導(dǎo)體材料,如聚晶金剛石。</p><p><b> 光加工</b></p><p> 除了硬質(zhì)合金和鎢電極外,光也是一個(gè)不錯(cuò)的微孔加工的“刀具”材料。雖然大多數(shù)用來(lái)鉆孔的激光都是處于紅外光譜范圍,但是據(jù)賓尼法尼亞州的Ex One Co
81、., Irwin,公司的激光技術(shù)主管蘭迪吉爾摩介紹,他們采用是綠色光柱的超脈沖技術(shù)。不像其他種類(lèi)的微加工光束,超脈沖是一種納秒級(jí)激光,它綠色光束的波長(zhǎng)為532納米。這種技術(shù)產(chǎn)生的激光一對(duì)脈沖時(shí)間為4到5納秒,每對(duì)脈沖的間隔為50到100納秒。這種技術(shù)的加工方式成倍的提高了加工效率?!芭c其他激光加工相比,這種技術(shù)大大的提高了金屬去除率”吉爾摩說(shuō):“由于這種激光脈沖短,所以很大程度上減少了對(duì)工件材料的熱損傷”</p><
82、p> 另外,這種技術(shù)加工的孔還帶有一個(gè)負(fù)的錐度,就是入口直徑小于出口直徑,這有利于燃料的流動(dòng)。</p><p> 為了加強(qiáng)這技術(shù)的競(jìng)爭(zhēng)力,Ex One公司研發(fā)了一種專(zhuān)利材料,將這種材料注入中空的部件體內(nèi),可以防止光柱對(duì)所加工孔以下壁體的燒傷。光加工之后,可以將這種材料完全清理掉。</p><p> 根據(jù)其應(yīng)用的不同,機(jī)械鉆削加工、插銑、電火花加工和光加工在微孔加工中都占有一席之
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 微孔的加工方法外文翻譯
- 機(jī)械加工畢業(yè)設(shè)計(jì)外文翻譯--微孔的加工方法
- 機(jī)械類(lèi)畢業(yè)設(shè)計(jì)外文翻譯---微孔的加工方法
- 【146】微孔的加工方法【中文7300字】
- 【146】微孔的加工方法【中文7300字】
- 【146】微孔的加工方法【中文7300字】.doc
- 【146】微孔的加工方法【中文7300字】.doc
- 外文翻譯---cnc加工加減速平穩(wěn)變化的方法
- 外文翻譯----cnc加工加減速平穩(wěn)變化的方法
- 外文翻譯_CNC加工加減速平穩(wěn)變化的方法.doc
- 機(jī)械加工外文翻譯
- 機(jī)械加工外文翻譯
- 數(shù)控加工外文翻譯
- 外文翻譯---車(chē)床加工
- 外文翻譯---鋁加工
- 外文翻譯---先進(jìn)的加工工藝
- 飛秒激光加工光纖微孔方法及其模擬.pdf
- 外文翻譯--加工中心加工標(biāo)準(zhǔn)
- 外文翻譯--機(jī)械加工中心
- 外文翻譯--數(shù)控加工工藝
評(píng)論
0/150
提交評(píng)論