版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、<p><b> 附錄</b></p><p><b> 附錄1</b></p><p><b> 英文原文</b></p><p> Journal of Materials Processing Technology 187–188 (2007) 19–25</p>
2、<p> Micro deburring for precision parts using magnetic </p><p> abrasive finishing method S.L. Ko a,., Yu M. Baron b, J.I. Park a </p><p> a Center for Advanced E-System Integration, K
3、onkuk University, 1 Hwayang-dong, </p><p> Kwangjin-gu, Seoul 143-701, Republic of Korea </p><p> b Saint-Petersburg State Polytechnic University, St.-Petersburg, Russia </p><p>&
4、lt;b> Abstract </b></p><p> Using the developed electromagnetic inductor for deburring micro burr, more detail characteristics of the performance are analyzed. Experiments were carried out to veri
5、fy the influence of each conditions: volume of powder, height of gap, rotational frequency of the inductor and feed velocity. Proper deburring conditions are suggested to satisfy the productivity and the accuracy. In add
6、ition to deburring efficiency, the influence to surface roughness is analyzed. To improve the surface roughness </p><p> . 2006 Elsevier B.V. All rights reserved. </p><p> Keywords: Magnetic a
7、brasive finishing (MAF); Micro burrs; Electromagnetic inductor; Deburring </p><p> 1. Introduction </p><p> The quality of precision parts can be evaluated by the surface and edge quality. The
8、 geometry of edge is determined by deburring process for removing burr and rounding process, which is </p><p> necessary for its function. The surface quality is determined by surface roughness and the stre
9、ss state of the surface. As one of the finishing methods, magnetic abrasive finishing method </p><p> (MAF) has been used for a long time [1–3]. MAF is based on the magnetization property of ferromagnetic i
10、ron and the machining property of abrasives, which is made of Al2O3 and SiC. Along the magnetic flow, which is formed by the magnetic inductor, the magnetic powders will be arranged like brushes and the strength and stif
11、fness of the magnetic brushes can be controlled by the electric current supplied. As a first application of MAF technology for deburring, the burr formed on plane after drillin</p><p> E-mail addresses: slk
12、o@konkuk.ac.kr (S.L. Ko), </p><p> baron@burr.hop.stu.neva.ru (Y.M. Baron), jungil78@hanmail.net (J.I. Park). </p><p> and 0.30–0.40 m surface roughness on surface after piercing operation. In
13、 the previous work, electromagnetic inductor for deburring this part was designed and manufactured. Some conditions were applied to evaluate the performance of the inductor [5]. The proper powders are selected based on t
14、he previous work using the evaluation method to characterize performance </p><p> of powder [6]. The characteristic equation can be obtained from simply developed experiment method, which enables to predict
15、 the productivity and powder tool life [6]. In this paper, proper </p><p> finishing conditions are to be recommended for precision deburring. Volume of powder, rotational frequency of inductor, height of g
16、ap and the feed velocity of table are the main factors to be determined from the more detail experiment based on the result from the experiment in previous work. As a result, the optimized conditions are suggested to imp
17、rove productivity. The vibration table is applied to improve the performance, which was verified in previous work also as in Fig. 1. The efficiency f</p><p> In the case of micro deburring for precision par
18、ts, improvement of surface roughness during deburring becomes one of the most important task. Most influencing factors for surface roughness are component of powder and the coolant supply method. Fe-powder without abrasi
19、ve is proved to be efficient by protecting adhesion on the surface which results in 0924-0136/$ – see front matter . 2006 Elsevier B.V. All rights reserved. </p><p> doi:10.1016/j.jmatprotec.2006.11.183 <
20、;/p><p> S.L. Ko et al. / Journal of Materials Processing Technology 187–188 (2007) 19–25 Fig. 1. Overall view of inductor EMI-2 (a) and the scheme of its application (b). improved surface roughness. And conti
21、nuous supply of coolant improves the surface roughness. The influence of flow rate is also investigated. </p><p> 2. Experiment equipment </p><p> The electromagnetic inductor EMI-2 was design
22、ed and manufactured specially for burrs removal on surfaces of small parts made from ferromagnetic or non-magnetic materials. The view of the inductor and the scheme of the experiments are shown in Fig. 1. Three kinds of
23、 movements are involved in this case: inductor rotation; feed of the sample (workpiece); oscillation of the top plate with a sample in the direction normal to the feed direction. The sample moves inside the working gap f
24、illed by magnet</p><p> S.L. Ko et al. / Journal of Materials Processing Technology 187–188 (2007) 19–25 netization curves for EMI-2 with different working gaps are shown in Fig. 2. The vibrating table was
25、used to activate abrasive cutting and to improve the quality of worked surfaces. It is claimed that the extra oscillation movement at MAF guarantees self-sharpening of the powder and higher productivity and better qualit
26、y of a worked surface as a result [2]. The used vibrating table creates longitudinal or transverse</p><p> 3. Characterization of inductor EMI-2 </p><p> The main differences of the electromag
27、netic inductor EMI-2 to EMI-1, which was developed for the burr on plane [4] are following: a sample is continuously at contact with magnetic abrasive powder during process; both sides of the sample are Fig. 4. Influence
28、 of MAF parameters to process productivity using the inductor EMI-2: volume of the powder (a), height of the work gap (b), inductor rotation frequency (c) and feed (d). Fig. 5. Influence of coolant to MAF productivity an
29、d the work surface rou</p><p> unit area, which is used for comparison of deburring conditions [6]. MAF conditions are: working gap height 4 mm; magnetic intensity in the gap 0.48 T; coil current I = 1–1.5
30、A; inductor rotation frequency n = 95–280 min.1; feed f = 127 mm/min; oscillation frequency of vibration table nosc = 500 min.1; amplitude of oscillation Aosc = 2.5 mm; MAF duration corresponds to number of the table str
31、okes in feed N = 1, 2, 4, 8 (it corresponds to 0.5, 0.9, 1.9, 3.8 min); magnetic abrasive powder Fe(CH2);</p><p> 3.1.1. Amount of the powder for process </p><p> The powder is packed inside t
32、he working gap by magnetic forces, and the amount of powder is important for productivity and cost of MAF operation. The volume of the working gap (the gap height δ = 4 mm) at inductor EMI-2 equals to Vg =19cm3. This vol
33、ume was calculated as 100% of the powder for one-time process Vp. Other conditions are: n = 95 rpm; f = 127 mm/min; I =1.0A (B = 0.45 T); N = 2; coolant (cutting Fig. 7. Rounding of edges by MAF (100×). S.L. Ko et a
34、l. / Journal of Materials Processing</p><p> 3.1.2. Height of the work gap δ </p><p> The design of inductor EMI-2 allows to change the height of the work gap from 2 up to 10 mm according to t
35、he height of a workpiece. Influence of the wok gap was examined over </p><p> the range δ = 4–10 mm at Vp = 130% Vg. Other conditions were the same as at previous experiment. Increase of the work gap induce
36、s the decrease of productivity by the decrease of magnetic intensity inside the gap. The coil current was constant during this experiment. It can be observed from Fig. 4b that magnetic intensity becomes smaller as work g
37、ap δ increases. </p><p> 3.1.3. Inductor rotational frequency and feed </p><p> When the volume of powder equals to 100% Vδ and the height of the gap δ = 4 mm at this experiment, the influence
38、 of the rotation frequency of inductor is shown in Fig. 4c. The duration of the contacts of powder grains with the work surface increases proportionally to the rotation frequency n, which increases the productivity eithe
39、r. But rate of the increase of productivity becomes slow at the frequency larger than 180 rpm as shown in Fig. 4c. This might be caused by the increase of centrifugal f</p><p> The use of chemical active an
40、d surface-active coolants is very important for MAF process [2]. Induced currents are generated inside a workpiece material and especially inside of its blanket during MAF. The electric charged surface of the workpiece a
41、ctivates chemical processes and an action of surface-active matters. This fact was verified at the research of deburring by MAF [6]. The research on the role of coolant was continued at these experiments. The experiment
42、was carried out with n = 95 rpm</p><p> 4. Analysis of edges and surface quality </p><p> after MAF The samples shown in Fig. 3 were used. The edges after piercing had several kinds of defects
43、: burrs, scratches and rough surface roughness (Fig. 6). Magnetic abrasive finishing deletes all these defects. And it takes longer to remove all the defects than to remove burrs. For example burrs were completely remove
44、d after one stroke of feed and the rounding of edges was Fig. 8. Edge quality before (a) and after MAF (b) (1000×). S.L. Ko et al. / Journal of Materials Processing Technology 18</p><p> CH2 mixture po
45、wder mixture powder powder CH2 C 2.47 0 1.46 23.11 5.84 Si 0.40 0.30 0.71 1.99 Mn 0.51 0.44 0.64 1.09 0.36 0.35 Fe 55.94 58.70 58.07 96.42 39.90 50.34 Ni 38.88 40.34 40.73 25.96 34.17 Cu 0.18 0.23 0.07 Er 1.61 0 1.09 Al
46、0.56 0.37 Others Co (0.32) O (6.78); Ca (0.72); O (4.79); Ca (3.35); Cl (0.61); K (0.20) Cl (0.20) Total 100 100 100 100 100 100 process, and this promotes adhesion of the component of powder to the work surface. We show
47、ed above that a surface-active coolant hinders</p><p> at conditions: n = 180 rpm; f = 127 mm/min; nosc = 500 min.1; Aosc = 2.5 mm; B = 048 T; MAF duration for two strokes. The coolant (cutting oil) was per
48、iodically injected into the gap. Two sorts of powders were used: mechanical mixture of powders of iron CH2 (50% vol.) and Al2O3 (50% vol.); iron powder CH2 [4]. The top surface of sample has tracks of abrasive cutting wh
49、en deburring was performed by the mixture powder (Fig. 9a). There were no tracks on the surface when iron powder was used (Fig. 9</p><p> 5. Conclusions </p><p> (1) Electromagnetic inductor f
50、or deburring and surface finishing of the part of electric gun is developed before. More detail characteristics of deburring are investigated by changing the main parameters. </p><p> (2) As deburring condi
51、tions, volume of powder, height of gap, inductor rotational frequency, feed velocity and the method of coolant supply are analyzed by experiment more detail. </p><p> (3) In addition to the performance of d
52、eburring, the influence to surface roughness is also analyzed. To improve the surface roughness, several systems of coolant supply are applied. The continuous coolant flow improves the surface quality. </p><p&
53、gt; (4) The remained particle on surface after MAF consists of the component of the coolant and abrasive. Ultrasonic cleaning can remove the particles completely. And the iron powder is recommended to prevent adhesion a
54、nd the particles on surface. </p><p> Acknowledgement This work was supported by the Ministry of Science and Technology of Korea through the 2001 National Research Laboratory (NRL) program. References </
55、p><p> [1] Y.M. Baron, Technology of Abrasive Finishing in Magnetic Field, Mashinostroenie, </p><p> Leningrad, 1975. </p><p> [2] Y.M. Baron, Magnetic Abrasive and Magnetic Finishi
56、ng of Products and </p><p> Cutting Tools, Mashinostroenie, Leningrad Rus, 1986. </p><p> [3] H. Yamaguchi, T. Shinmura, Study of an internal magnetic abrasive finishing </p><p>
57、 using a pole rotation system. Discussion of the characteristic abrasive </p><p> behavior, Precis. Eng. J. Int. Soc. (2000) 237–244. </p><p> [4] S.L. Ko, Y.M. Baron, J.W. Chae, V.S. Polishuk
58、, Development of deburring </p><p> technology for drilling burrs using magnetic abrasive finishing method, in: </p><p> LEM21, November, Niigata, Japan, 2003. </p><p> [5] J.L.
59、Park, S.L. Ko, Y.H. Hanh, Y.M. Baron, Effective deburring of micro </p><p> burr using magnetic abrasive finishing method, key engineering materials, </p><p> Trans Tech Eng. 291–292 (2005) 25
60、9–264 (ISSN 1013-9826). </p><p> [6] Y.M. Baron, S.L. Ko, J.I. Park, Technique of comparison and optimization of </p><p> conditions for magnetic abrasive finishing, key engineering materials,
61、 Trans </p><p> Tech Eng. 291–292 (2005) 297–302 (ISSN 1013-9826).</p><p> 使用磁性粉末去除精密部件上毛刺的加工方法</p><p> S.L. Ko a,?, Yu M. Baron b, J.I. Park a</p><p><b> 摘要&
62、lt;/b></p><p> 使用改進后的電磁感應器去除微小毛刺,分析加工中的更多細節(jié)特征。根據(jù)實驗來檢驗不同條件對去毛刺的影響:粉末的體積,間隙的寬度,感應器的轉(zhuǎn)動頻率和進給速度。找出去毛刺最佳的工作條件來滿足生產(chǎn)率和精確度的要求。除了對去毛刺效率的研究之外,還要研究加工對表面粗糙度的影響。為了改善表面粗糙度和去除雜質(zhì),需要研究冷卻液供給方法和粉末的配料。連續(xù)流動的冷卻液和未經(jīng)研磨的鐵粉對于去除毛刺和
63、改善表面質(zhì)量是非常有效的。</p><p> 關(guān)鍵詞:磁性研磨粉末加工法(MAF);微小毛刺;電磁感應器;去毛刺</p><p><b> 1.導言</b></p><p> 從表面和邊緣的質(zhì)量能評估出精密部件的質(zhì)量。邊緣的幾何形狀由去毛刺加工和圓周加工決定,這對于零件的好壞有巨大作用。工件表面質(zhì)量取決于表面粗糙度和表面受應力的情況。作為
64、精加工方法的一種,磁性粉末法(MAF)已經(jīng)用了很長時間了。MAF的原理是:磁鐵的具有的磁化的性質(zhì)以及能夠研磨加工的性質(zhì),它是由二氧化三鐵和碳化硅組成的。隨著磁性感應器所形成的磁場的運動,那些磁粉將被排列成像刷子一樣,這些磁性刷子的濃度和硬度可以被電流供應所控制。</p><p> 最初應用MAF技術(shù)去除毛刺是嘗試去除鉆孔后在平面上形成的毛刺。為了能夠進行更有效的去除毛刺的分析研究,我們制造了一個去除鉆孔形成的毛
65、刺的感應器。用一個精密的部件作為這項研究的樣本,它的毛刺的平均厚度有5-10微米。進行加工后,表面的毛刺厚度變成了0.3-0.4微米。在實驗前期的準備工作中,我們設計并且制造了去除毛刺的電磁感應器,在不用的條件下進行感應器的性能評估。之前一些合適的粉末通過某種評測方法從各種性質(zhì)的粉末中被挑選出來。從稍稍改進的實驗方法中能夠得出特征方程式,它能夠預先推算出生產(chǎn)力和粉末工具的壽命。在這個研究里,得出合適的工作條件將被推薦為精密部件去除毛刺。
66、粉末的體積,感應器的轉(zhuǎn)動頻率,間隙的寬度和工作臺的進給速度是根據(jù)這些實驗得出的需要進行詳細研究的主要條件。實驗結(jié)果是為提高生產(chǎn)效率和最優(yōu)化生產(chǎn)環(huán)境。使用震動臺工作能改善去毛刺的性能,在實驗之前已經(jīng)被驗證了,如圖一所示。去除毛刺的效果以及表面粗糙度能夠通過使用震動工作臺來改進。</p><p> 在需要去除微小的毛刺的情況下,去除毛刺過程中如何改進表面粗糙度成了首要任務之一。影響粗糙度大部分因素是粉末的組成和冷卻
67、液的提供方法。未經(jīng)研磨的鐵粉在防止表面粘附力被證實更有效果,這些粘附力能直接影響表面的粗糙程度。并且連續(xù)不斷的冷卻液供應也能改善表面的粗糙度。而這個流速的影響也需要進行研究。</p><p><b> 2.實驗設備</b></p><p> 電磁感應器EMI-2為了去除精密部件上的毛刺被特別設計并且制造出來的,它是由鐵磁體和無磁性材料做成的。感應器的外觀和實驗的方
68、案都在圖片一上顯示。這里涉及到三種運動方式:感應器的轉(zhuǎn)動,樣品(工件)的進給,樣品從正常方向到進給方向的頂盤的震動。樣品在填滿電磁粉末的加工間隙里運動,這些粉末淹過了樣本,同時進行修整和兩邊去除毛刺的加工。圖二中是加工間隙高度較小,電感強度B較大和切削力。這些數(shù)據(jù)從沒有填粉末的加工間隙推算出。當間隙里面填滿磁性粉末時,磁感強度增加了10%。在加工過程中,通過加工間隙和工件與磁性研磨粉末之間持續(xù)不斷的接觸,磁感應器EMI-2的表面加工工序
69、和磁粉具有相同的特性。EMI-2對不同加工間隙的磁化曲線在圖二中顯示。</p><p> 震動臺被用來輔助砂輪切割和改善工件表面質(zhì)量。它要求MAF額外的震動運動來保證粉末的自我銳化,來取得更高的生產(chǎn)力和更好的工件表面質(zhì)量。這個震動工作臺產(chǎn)生了頂盤在進給運動的方向上的縱向的和橫向的震動。這個頂盤是可以替換的,它由鐵磁體和無磁性的材料做成。</p><p> 3.感應器EMI-2的描述&l
70、t;/p><p> 電磁感應器EMI-2和EMI-1之間最大的區(qū)別就是:在加工過程中,樣本與磁性粉末持續(xù)不斷地相接觸。樣本的兩面同時進行加工。但是感應器僅僅檢測到能夠放到內(nèi)部間隙的較小的一部分。</p><p> 一部分的鐵鎳合金的電槍作為樣本通過感應器EMI-2來確定MAF去除微小毛刺的工作環(huán)境(圖3a)。上面有三個直徑0.1mm的通孔。為了提高孔的邊緣的質(zhì)量和表面的質(zhì)量有必要進行微小的
71、毛刺的去除。最初的毛刺的幾何形狀和邊緣橫截面如圖3b和c。</p><p> 實驗按照圖1b的計劃執(zhí)行完成。工件被固定在鋁制的頂盤上。特定的加工余量被定義為每個單位區(qū)域內(nèi)的體積。這些區(qū)域是被用來做去毛刺環(huán)境的比較。MAF加工環(huán)境:加工間隙寬度4mm;磁感強度0.48T;線圈電流I=1-1.5A;感應器轉(zhuǎn)動頻率n=95-280min-1;進給速度f=127mm/min;振動臺的震動頻率nosc = 500 min
72、?1;震動的幅度Aosc = 2.5 mm;MAF的周期與工作臺進給的節(jié)奏相一致N= 1, 2, 4, 8(它相對應的時間是0.3,0.9,1.9,3.8分鐘);磁性研磨粉末鐵粉;粉末的體積Vp = 11–27 cm3;需要研究的參數(shù):Vp, n, f, nosc。</p><p> 磁力使鐵粉充滿了加工間隙,對于生產(chǎn)力和MAF運轉(zhuǎn)的消耗,知道粉末的總數(shù)是非常重要的。感應器EMI-2上加工間隙(間隙厚度δ =
73、4 mm)的體積等于19cm3,這個體積能計算出100%的粉末在一次加工動作中的體積。其他條件:n = 95 rpm;f = 127 mm/min; I = 1.0A (B = 0.45 T); N= 2;冷卻液(切削液)流動率0.96l/mm。實驗結(jié)果在圖4a中顯示。粉末的數(shù)量的增加能伴隨著更大的磁力,而能使生產(chǎn)力得到提高。但不是很明顯,因為這里有一些空余的間隙,多余的粉末有可能進入主軸附近的這些間隙里。</p><
74、;p> 感應器EMI-2的設計能允許根據(jù)工件大小的改變間隙厚度2-10mm。檢測影響工作間隙的范圍當Vp = 130% Vg δ = 4–10mm。其他的條件和前一次實驗相同。增加加工間隙使間隙里的電感強度減小,生產(chǎn)力降低。實驗中線圈電流是一個常數(shù)。從圖4b能夠看出電感強度隨著加工間隙δ的增大而減小。</p><p> 在這個實驗中,當粉末的體積等于100% Vδ,加工間隙δ=4mm時,影響感應器轉(zhuǎn)動
75、頻率的因素如圖4c。粉末與工件表面的接觸時間根據(jù)轉(zhuǎn)動頻率n能適當增加,生產(chǎn)力也能提高。但是當頻率大于180rpm時,生產(chǎn)力增長比例開始下降,如圖4c。這應該是由于離心力和角速度的增加,大部分的粉末脫離了加工間隙。進給速度的最優(yōu)化的實驗在以下條件進行:n = 95 rpm; f = 127–507 mm/min;nosc = 500 min?1;Aosc = 2.5 mm;δ = 4 mm; B = 0.48 T; MAF周期——冷卻液沖
76、擊工件的發(fā)出前后的兩個聲音(根據(jù)進給情況,在4-15s之間)。結(jié)果在圖4d里面顯示。進給速度的范圍在127-342mm/min時候的影響不是很大。但是要得到最佳的表面粗糙度時,我們?nèi)=342mm/min。</p><p> 化學活化劑和表面冷卻液的作用對于MAF的加工很重要。工件材料內(nèi)部產(chǎn)生感應電流,尤其是在MAF的外層表面內(nèi)部。工件表面的電荷會促進產(chǎn)生一些化學變化。在MAF去毛刺的研究中,這個情況也被證實。
77、冷卻液的作用的研究在這些實驗中持續(xù)著。n = 95 rpm;Vp = 100% Vg; δ = 4 mm,進行這些實驗。其他條件和前面實驗相同。當冷卻液周期性的注射到加工間隙中時,去除余量增加,而且在冷卻液持續(xù)流動的情況下增加的更多,如圖5a。冷卻液的流動能夠保證在加工間隙中的工件表面的各個部分都能得到冷卻,而提高生產(chǎn)力。但是過多的冷卻液也會降低生產(chǎn)力,因為強大的冷卻液的水流會沖刷掉加工間隙里面的粉末(圖5b)。對于良好的表面粗糙度冷卻
78、液的出現(xiàn)顯得很重要。MAF工作中,表面粗糙度Ra取決于提供冷卻液的方法,在圖5c中。MAF加工時,不使用流動的冷卻液,而周期性注入來進行冷卻,使表面粗糙度變得更糟。在圖5c,沒有用冷卻液的時候得到了最差的粗糙度。在工件表面粘附的粉末的組成的原因也許能解釋為由MAF工作時產(chǎn)生的熱量決定的。沒有冷卻液的加工比周期性注射冷卻液的加工暴露了更多劇烈的表面破壞(圖5c)。粘附力隨</p><p> 所以合適的去處毛刺條件
79、,從實驗中能夠總結(jié)出:感應器EMI-2轉(zhuǎn)動頻率 n = 180 rpm; f = 342 mm/min;nosc = 500 min?1; Aosc = 2.5 mm;;δ = 4 mm; Vp = 1.3Vg;冷卻方法——用流速為1l/min的連續(xù)不斷的冷卻液冷卻。未經(jīng)研磨的鐵粉小微粒在這里可以作為磁粉使用。在決定了條件的MAF去毛刺實驗中,高度1.5-2.5微米的毛刺能在15秒內(nèi)去除。</p><p> 4
80、.MAF加工后的邊緣和表面質(zhì)量的分析</p><p> 被鉆孔后的樣本的孔邊緣有幾個缺點:毛刺,刮痕,粗糙的表面粗糙度(圖6)。磁性研磨加工法能去除所有這些缺點。去除這些缺點花的時間比去除毛刺的更長。例如在一次進給的作用后毛刺能全部去除,而周圍的邊緣則需要2次或更多次才能完成。在第一次,第二次,第三次和第四次作用后的孔的周圍邊緣情況在圖7a-c中。我們能夠看到,控制邊緣的范圍大小是有可能的:MAF的周期越長,范
81、圍就越大。MAF加工前后的邊緣的質(zhì)量如圖8。鐵粉被用來去除毛刺和周圍的棱角。</p><p> 在MAF去毛刺以及周圍的棱角之后,最上面的表面被磨光了。MAF的對表面粗糙度的條件的影響因素已經(jīng)在上面描述了。MAF加工具有自己的特點:工件表面在加工過程中會產(chǎn)生電荷,并且他促進了工件表面的粉末的結(jié)合。我們在上面說了,表面活性冷卻液能阻礙粘附力。這個實驗在這些條件下完成:n = 180 rpm;f = 127 mm/
82、min;nosc = 500 min?1;Aosc = 2.5 mm; B = 048 T;MAF周期為2個敲擊聲。冷卻液(切削液)周期性的注入間隙中。使用了兩種粉末:亞甲基鐵(50%)和三氧化二鋁(50%)的混合粉末;鐵粉。當使用混合粉末進行加工的時候,在樣本表面的最上層有砂輪切割的痕跡(圖9a)。使用鐵粉的時候就沒有出現(xiàn)這些痕跡。他們應該是由堅硬的微粒造成的——混合粉末中的二氧化三鋁,是它破壞了表面粗糙度。然而這兩種方法去除的余量幾
83、乎差不多。我們發(fā)現(xiàn)在用酒精清洗后仍然有一些顆粒依附在加工件表面,而表面的化學成分已經(jīng)被改變了。這些依附的微粒在圖10中顯示。工件表面的化學成分在MAF加工過后被改變了。碳元素和鉺元素消失了,硅的含量減少或者消失了。MAF加工使混合粉末中的二氧</p><p><b> 5.結(jié)論</b></p><p> ?。?)去毛刺電磁感應器和用電槍的表面拋光之前就開展了。通過改
84、變主要的參數(shù),我們研究了更多的詳細的特征。</p><p> ?。?)作為去毛刺的條件,粉末的體積,間隙的高度,感應器的轉(zhuǎn)動頻率,進給速度和冷卻液的供給方法都通過實驗進行了研究。</p><p> ?。?)除了去毛刺的性能,我們還要研究了對表面粗糙度的影響。為了改善粗糙度,應用了幾種的冷卻液。連續(xù)流動的冷卻液效果最好。</p><p> (4)在MAF加工后表面殘
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 超聲去除小孔交叉孔處毛刺加工方法的研究.pdf
- 粉末冶金產(chǎn)品毛刺機械去除機理分析與實驗研究.pdf
- 精密機械加工工藝外文翻譯
- 外文翻譯--微孔的加工方法
- 機械加工外文翻譯-- 先進的精密機械加工的小深孔
- 機械加工外文翻譯-- 先進的精密機械加工的小深孔
- 去除毛刺飛邊塊.dwg
- 機械加工外文翻譯-- 先進的精密機械加工的小深孔(原文)
- 機械加工外文翻譯-- 先進的精密機械加工的小深孔(譯文)
- 微孔的加工方法外文翻譯
- 去除毛刺飛邊塊.dwg
- 去除毛刺飛邊塊.dwg
- 去除毛刺飛邊塊.dwg
- 外文翻譯--精密與超精密磨削技術(shù)
- 機械加工外文翻譯-- 先進的精密機械加工的小深孔(原文).pdf
- 機械加工外文翻譯-- 先進的精密機械加工的小深孔(譯文).doc
- 機械加工外文翻譯-- 先進的精密機械加工的小深孔(譯文).doc
- 機械加工外文翻譯-- 先進的精密機械加工的小深孔(原文).pdf
- 精密去毛刺機說明書
- 外文翻譯---借助dds的精密頻率的一種替代方法
評論
0/150
提交評論