2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、<p><b>  自適應(yīng)PID控制器</b></p><p>  基于Ziegler Nichols自整定方法的參數(shù)的PLC</p><p><b>  摘要</b></p><p>  本文介紹一種改進的PID控制器是作為一個動態(tài)的系統(tǒng)控制器和必要的步驟,是解釋以表達對所提出的PID控制算法是更多的功能比傳統(tǒng)

2、的PID控制算法。在這里齊格勒-尼科爾斯的過程中反應(yīng)的方法是澄清,以候任自校正,及的優(yōu)勢,自我調(diào)整中有詳細(xì)的解釋。之后,自適應(yīng)丕三維控制器的算法,給出了使用自整定方法的初始參數(shù)。在這丕三維,比例和積分參數(shù)是在控制的自適應(yīng)算法和衍生產(chǎn)品的參數(shù)是一個不斷發(fā)現(xiàn),在齊格勒尼科爾斯基于自整定方法。最后,完整的算法是測試在可編程邏輯控制器,和結(jié)果,這項測試是提供和解釋。</p><p><b>  PID控制器&l

3、t;/b></p><p>  一比例積分微分控制器或PID控制器是一種常見的用于控制器在工業(yè)控制應(yīng)用??刂破鞯谋容^衡量的過程產(chǎn)值(元Y )與參考設(shè)定值( )值。差異或錯誤信號( e )是處理,然后計算控制信號為操縱的過程中的投入,使系統(tǒng)輸出達到所期望的參考價值。不同于簡單的控制算法, PID控制器可以調(diào)整的過程中投入的基礎(chǔ)上,歷史和變化率的錯誤信號,這使更準(zhǔn)確和更穩(wěn)定的控制。在這方面的文件,不同結(jié)構(gòu)的PI

4、D控制器是使用。</p><p>  圖1結(jié)構(gòu)的PID控制器</p><p>  圖1結(jié)構(gòu)的PID控制器 </p><p>  眾所周知,衍生金融工具可以計算或獲得如果錯誤變緩慢。由于反應(yīng)衍生工具,以高頻率的投入是遠(yuǎn)遠(yuǎn)高于其反應(yīng)慢變信號[ 13 ] 。因此,衍生金融工具的輸出在圖1是smoothened為高頻率的噪音,用一階過濾器,它使用的輸出系統(tǒng)( y )的。衍生

5、工具使用錯誤的信號可以形成高,衍生金融工具的輸出時,誤差信號具有較高的高頻成分。因此,在本文件中衍生金融工具的投入使用過濾的輸出系統(tǒng)。在這里,過濾器smoothens信號和抑制高頻率的噪音,由于過濾器的時間( TF )的常數(shù)(圖2 ) 。在應(yīng)用,其TF應(yīng)大于6月24日ts采樣周期[ 6 , 16 ] 。</p><p>  圖2 ,穩(wěn)定系統(tǒng)的輸出響應(yīng)( PLC模擬)</p><p>  在

6、圖1 ,積分信號是由錯誤乘以增益( k )和除以積分時間,和飽和度的差異除以積分時間。 PID控制器是一個魯棒控制器和這個結(jié)構(gòu)提出了一種更強大的控制器。飽和的組成部分是必要的離散時間控制器[ 8 ] 。正如以前說過,這個結(jié)構(gòu)是用來在一個可編程邏輯控制器,這種控制器的最高和最低的邊界。飽和組件的供應(yīng)沒有達成任何的另一點,除限制的最高和最低的邊界。因此,控制信號( u )的是有限的。</p><p>  齊格勒-尼科

7、爾斯的過程中反應(yīng)法</p><p>  過程中反應(yīng)法是一個實驗的開環(huán)整定方法,并只適用于開環(huán)穩(wěn)定系統(tǒng)。此方法由齊格勒和尼科爾斯是基于過程的信息的形式,開環(huán)階躍響應(yīng)得到了來自撞測試。這個方法可以被看作是傳統(tǒng)方法的基礎(chǔ)上的建模與控制。該齊格勒-尼科爾斯調(diào)整規(guī)則,發(fā)達國家給予閉環(huán)系統(tǒng)具有良好的衰減負(fù)載擾動。設(shè)計標(biāo)準(zhǔn)是四分之一振幅衰減的比例,這意味著振幅一振蕩應(yīng)減少的一個因素4超過整個時期。這相當(dāng)于閉環(huán)極點與相對阻尼約

8、二,這是太小[ 1 ] </p><p><b>  圖3 </b></p><p>  計算PID參數(shù)使用齊格勒-尼科爾斯的過程中反應(yīng)法</p><p>  這種方法的特點首先是核電廠的兩個參數(shù)nmax和L為一階和二階死亡時間系統(tǒng),然后計算PID參數(shù)( 4 ) 。這里n是最高點,最高坡度和L是死時間。 </p><p>

9、;<b>  ( 4 ) </b></p><p>  首先的一個步驟信號是適用的制度和程序啟動搜索死區(qū)時間。死區(qū)時間是的時候,系統(tǒng)沒有反應(yīng)的參考信號。在計劃,寬容是由于測量死區(qū)時間(圖4 ) ,因為總有那么一些高頻率的測量噪音,在系統(tǒng)輸出。作為如圖4所示,這些信號和分布的變化,在一區(qū)間的定義容忍。之后,動力系統(tǒng)開始跟進參考,并達致以外的容忍邊界,死時間的計算方式是PLC程序。 </p

10、><p><b>  圖4容忍極限</b></p><p>  如果死區(qū)時間是成品或計算,該程序?qū)铀阉髯罡叩男逼?。它收集所有斜坡及后加以搜集,選擇最大的斜坡。每一個斜坡計算方程( 5 ) 。               

11、</p><p><b> ?。?5 )</b></p><p>  它memorizes產(chǎn)值前一段時間,并采取了產(chǎn)值近一段時期,并劃分為他們的差異,采樣周期[ 3 , 5 ] 。接著該程式構(gòu)成的數(shù)據(jù),所有的斜坡,并選擇最大的斜坡。當(dāng)最大坡度的計算方法,程序等待穩(wěn)定狀態(tài),因為參數(shù)的系統(tǒng)是穩(wěn)定的在穩(wěn)定狀態(tài)。最后,程序會計算PID參數(shù)。</p><p&

12、gt;  概括起來,計算PID參數(shù)使用齊格勒-尼科爾斯p rm;第一所收集的資料,從開環(huán)植物響應(yīng)單位階躍輸入,然后檢查數(shù)據(jù)集,以找到最高的斜坡(圖3 )后,然后確定參數(shù)所需的齊格勒尼科爾斯prm ,最后,使用調(diào)諧關(guān)系產(chǎn)生的PID常數(shù)。 </p><p>  魯棒性齊格勒-尼科爾斯方法</p><p>  一個良好的PID控制器的設(shè)計應(yīng)表現(xiàn)出的魯棒性方面的小擾動,在控制器的系數(shù)。因此,一系列

13、的價值觀,確保魯棒性是確定的齊格勒-尼科爾斯p rm在( 6 ) ,是系統(tǒng)的時間常數(shù)(無控制器)為一階死系統(tǒng)( f ods) ,是解決時間(不包括控制器)二階死亡時間系統(tǒng)( sods ) [ 3 ] 。</p><p><b>  ( 6 ) </b></p><p>  圖5的仿真結(jié)果fodss向階躍響應(yīng)    &#

14、160;                </p><p><b> ?。?7 )</b></p><p>  可以看出,在方程組( 7 )和圖5 ,系統(tǒng)是一個更強大的系統(tǒng)比和系統(tǒng),由于比例。當(dāng)比率增加,從系統(tǒng)的沉降時間減

15、少,當(dāng)比率下降,從系統(tǒng),使超像一個二階系統(tǒng),當(dāng)比例大約是零,系統(tǒng),使振蕩[ 2 ] 。</p><p>  在方程組( 8 )和圖6 ,系統(tǒng)是一個更強大的系統(tǒng)比和系統(tǒng),由于比例。作為相似的,以圖6 ,系統(tǒng)具有良好的表現(xiàn),由于比例是大約。</p><p>  圖6的仿真結(jié)果sodss向階躍響應(yīng)        &#

16、160;       </p><p><b>  ( 8 )</b></p><p>  從數(shù)字六日及七日,齊格勒-尼科爾斯的過程中反應(yīng)法( p rm)始終提供了一個負(fù)責(zé)任的比例增益為P ID控制器。該方法不僅給表現(xiàn)良好,但也具有較強的魯棒性方面的控制器參數(shù)攝動[ 11 ] 。</p><

17、;p>  自校正使用齊格勒尼科爾斯的過程中反應(yīng)法</p><p>  PID參數(shù)必須有決心,從動態(tài)系統(tǒng)。正如以前說過,系統(tǒng)參數(shù)變化的影響,因為種種原因。如果PID控制器參數(shù)保持不變,相當(dāng)長的時間,動力系統(tǒng)無法控制的PID控制有效。根軌跡法,預(yù)示著頻分析方法和一些方法,這樣可用于這一計算的。但這些方法有復(fù)雜的數(shù)學(xué)計算,也系統(tǒng)和反饋系統(tǒng)的disturbations不能衡量一時沒有任何錯誤。此外,系統(tǒng)參數(shù)(如系統(tǒng)

18、增益)的變化,由于環(huán)境的變化。基于這些原因,自整定PID控制器是必要的,因為這種類型的控制器,可用于不同類型的系統(tǒng)和環(huán)境的情況。此外,自整定PID是一個魯棒控制器系統(tǒng)的不確定部分。也為在不斷變化的系統(tǒng)動力學(xué)控制器采用本身。因此,使用自整定PID是合理的而不是用任何其他的PID控制器已不斷參數(shù)[ 6 ] 。</p><p>  程序算法的PLC是由于在圖8 。該算法連續(xù)兩個啟動選項:一個是工作與最近的參數(shù)計算之前;

19、另一種選擇是工作與新參數(shù)。在這個選項中,程序發(fā)現(xiàn)新的PID參數(shù)的系統(tǒng)。由于齊格勒-尼科爾斯方法是適用于開環(huán)系統(tǒng),計劃首先取消了系統(tǒng)的意見,并等待系統(tǒng)響應(yīng)的解決。當(dāng)系統(tǒng)的輸出是復(fù)位,程序記錄系統(tǒng)的瞬時輸入,然后程序適用的一個步驟信號系統(tǒng)的投入。應(yīng)該說,這一步的信號是,至少有10 %大于系統(tǒng)的電流輸入(參考)價值[ 11 ] 。</p><p>  如果階躍信號小于10 % ,系統(tǒng)參數(shù)無法確定合理的。之后,運用階躍信

20、號,程序等待,直到系統(tǒng)輸出,收于產(chǎn)值。當(dāng)系統(tǒng)的輸出是穩(wěn)定的,程序會計算PID參數(shù)使用齊格勒-尼科爾斯的過程中反應(yīng)的方法和他們傳送至P ID參數(shù)輸入。當(dāng)PID參數(shù)加載,程序的重視,系統(tǒng)反饋和PID控制器。因此,系統(tǒng)開始工作,與PID控制器。</p><p>  澄清,必要的步驟,給出了在一個序列如下: </p><p>  -運行系統(tǒng)在開環(huán)模式</p><p>  -

21、等到系統(tǒng)輸出成為穩(wěn)定</p><p>  -記錄系統(tǒng)的輸入和輸出</p><p>  -適用的一個步驟輸入系統(tǒng)(大于1 0% ,最近輸入)</p><p>  -等到系統(tǒng)輸出成為穩(wěn)定</p><p>  -計算P ID參數(shù)和工作與P ID控制器。</p><p><b>  自適應(yīng)控制</b>&l

22、t;/p><p>  在日常用語, “適應(yīng)”是指改變一個行為,以符合新的情況。直觀,一自適應(yīng)控制器是一個控制器,可以修改其行為的反應(yīng)的變化的動態(tài)過程和性質(zhì)的騷亂。</p><p>  在第3條中,齊格勒尼科爾斯的過程中反應(yīng)的方法了三個不斷參數(shù)PID控制器;陳家強,鈦和TD 。不過,有些系統(tǒng)的反應(yīng),可不可預(yù)知的,而這些PID參數(shù)不能有效地工作。此外,自適應(yīng)控制可以幫助同時提供穩(wěn)定和良好的回應(yīng)。該

23、辦法的變化,控制算法系數(shù)的實時性,以補償?shù)淖兓?,在制度本身。在一般,控制器,定期監(jiān)測系統(tǒng)傳遞函數(shù),然后修改控制算法。它這樣做的同時學(xué)習(xí)的過程,而控制其行為。</p><p>  調(diào)整的自適應(yīng)算法向自我調(diào)整計劃</p><p>  自我-調(diào)整參數(shù),自適應(yīng)算法和P I三維控制器與對方一樣,在圖1 0。正如以前說過,衍生金融工具的參數(shù),直接去丕三維控制器,增益和積分計算,首先去的自適應(yīng)算法,然后

24、丕三維控制器。</p><p><b>  結(jié)論</b></p><p>  在這篇文章的自適應(yīng)丕三維控制器-使用齊格勒尼科爾斯基于自校正方法的參數(shù)是介紹及其應(yīng)用在一個可編程邏輯控制器,給出了。為此目的,首先,所有在執(zhí)行的一部分,工業(yè)PID控制算法是用于PID控制的衍生金融工具的投入是采取由系統(tǒng)輸出和過濾,如此高的頻率信號'的影響減至最低。然后,積分任期是證實

25、獲得更多的魯棒PID的結(jié)構(gòu)和最后輸出的PID是有限的,由于臨立會的最高和最低范圍內(nèi)。其次,齊格勒-尼科爾斯的方法,給出了一起魯棒性的定義,是界定??梢钥闯觯蟛糠止I(yè)系統(tǒng)在集團這個魯棒性的限制。調(diào)整的自適應(yīng)算法,以自整定PID控制器在第4條,魯棒性限制是增加。</p><p>  為貫徹落實發(fā)展算法1西門子S7 - 400的CPU 412-2 DP的PLC的是選定作為一個控制器由于其良好的性能和它的發(fā)展結(jié)構(gòu)。事后

26、發(fā)達PLC的算法是模擬的兩個二階系統(tǒng)。結(jié)果表明,自適應(yīng)丕三維控制器具有良好的表現(xiàn),一個大型的比例,工業(yè)系統(tǒng)。</p><p>  作為一個結(jié)果,在這項工作中, PID的應(yīng)用程序和系統(tǒng)仿真塊,得到了普遍使用在其他的工業(yè)體系。</p><p>  Adaptive PID Controller </p><p>  Using Ziegler Nichols based

27、 Self-Tuning Method’s Parameters for Programmable Logic Controllers</p><p><b>  Abstract</b></p><p>  In this paper a modified PID controller is presented as a dynamic system control

28、ler and necessary steps are explained in order to express the presented PID algorithm is more functional than the classic PID controller algorithms. Here Ziegler-Nichols process reaction method is clarified to designate

29、self-tuning, and advantages of self-tuning are explained in detail. After that, an adaptive PI-D controller algorithm is given using self-tuning method’s initial parameters. In this PI-D, proportion a</p><p>

30、;  PID Controller</p><p>  A Proportional-Integral-Derivative controller or PID controller is a common used controller in industrial control applications. The controller compares the measured process output

31、value (y) with the reference setpoint (r) value. The difference or error signal (e) is then processed to calculate the control signal for the manipulated process inputs so the system output reaches the desired reference

32、value. Unlike simpler control algorithms, the PID controller can adjust process inputs based on the </p><p>  Figure 1 Structure of PID Controller</p><p>  The Structure of the PID Controller in

33、 Figure 1</p><p>  As known, the derivative can be computed or obtained if the error varying slowly. Since the response of the derivative to high-frequency inputs is much higher than its response to slowly v

34、arying signals [13]. So the derivative output in Figure 1 is smoothened for high-frequency noises by using first order filter, and it uses output of the system (y). The derivative which uses error signal can form high de

35、rivative output when the error signal has high frequency components. Thus, in this paper the</p><p>  Figure 2 Smoothen of System Output Response (PLC Simulation)</p><p>  In figure 1, the inte

36、gral signal is formed by the error multiplied by gain (K) and divided by integral time, and saturation difference divided by integral time. PID controller is a robust controller and this structure puts forward a more rob

37、ust controller. The saturation component is necessary for discrete time controllers [8]. As said before, this structure is used in a programmable logic controller, and this controller has maximum and minimum borders. The

38、 saturation component supplies not to r</p><p>  Ziegler-Nichols Process Reaction Method</p><p>  Process reaction method is an experimental open-loop tuning method and is only applicable to ope

39、n-loop stable systems. This method presented by Ziegler and Nichols is based on process information in the form of the open loop step response obtained from a bump test. This method can be viewed as a traditional method

40、 based on modeling and control. The Ziegler-Nichols tuning rules were developed to give closed loop systems with good attenuation of load disturbances. The design criterion was quarter</p><p>  Figure 3 Zie

41、gler-Nichols PRM</p><p>  Calculations of PID Parameters Using Ziegler-Nichols Process Reaction Method</p><p>  This method firstly characterizes the plant by two parameters Nmax and L for first

42、 and second order dead time systems and then calculates PID parameters (4). Here N max is the point of maximum slope and L is the dead time.</p><p><b>  (4)</b></p><p>  First a step

43、 signal is applied to the system and program starts to search the dead time. The dead time is the time when system gives no response to reference signal. In program, a tolerance is given for measuring the dead time (Figu

44、re 4), because there are always some high frequencies measuring noises at system output. As shown in Figure 4, these signals and distributions change in an interval defined tolerance. After the dynamic system starts to f

45、ollow reference and reaches outside the toleranc</p><p>  Figure 4 Tolerance Limit</p><p>  If the dead time is finished or calculated, the program starts to search maximum slope. It collects a

46、ll slopes and after collecting them, it selects the biggest slope. Every slope is calculated with equation (5).</p><p><b>  (5)</b></p><p>  It memorizes the output value of previous

47、 period and takes the output value of the recent period and divides their difference by sampling period [3, 5]. Then the program constitutes data of all slopes and selects the biggest slope. When the maximum slope is cal

48、culated, the program waits steady state because the parameters of system are stable in steady state. Finally, the program calculates PID parameters. </p><p>  To sum up, to calculate PID parameters using Zie

49、gler-Nichols PRM; first gather data from open-loop plant response to unit step input, then examine data set to find the maximum slope (Figure 3), after then determine the parameters needed for Ziegler Nichols PRM, finall

50、y, use tuning relations to generate PID constants. </p><p>  Robustness of Ziegler-Nichols Method</p><p>  A good PID controller design should exhibit robustness with respect to small perturbati

51、ons in the controller coefficients. Thus, the range of values that ensures robustness was determined for Ziegler-Nichols PRM in (6), where is system’s time constant (without controller) for first order deadtime systems

52、 (FODS), and is settling time (without controller) for second order dead time systems (SODS) [3].</p><p><b>  (6)</b></p><p>  Figure 5 Simulation Results of FODSs to the Step Resp

53、onse</p><p><b>  (7)</b></p><p>  As seen in equations in (7) and figure 5, system is a more robust system than do and systems due to ratio. When ratio increases from , system se

54、ttling time is decreasing and when ratio decreases from system makes overshoot like a second order system, and when ratio is approximately zero, systems make oscillation [2].</p><p>  In equations in (8)

55、and Figure 6, system is a more robust system than do and systems due to ratio. As resembling to figure 6, system has a good performance due to ratio is approximately. </p><p>  Figure 6 Simulation Resul

56、ts of SODSs to the Step Response</p><p><b>  (8)</b></p><p>  From figures 6 and 7, Ziegler-Nichols process reaction method (PRM) always provides a responsible proportional gain for

57、PID controller. This method not only gives good performance but also is robust with respect to controller parameter perturbations [11].</p><p>  Self-Tuning using Ziegler Nichols Process Reaction Method</

58、p><p>  PID parameters must be determined from dynamic system. As said before, system parameters change because of various reasons. If PID controller parameters remain the same for a long time, the dynamic syst

59、em could not be controlled by PID efficiently. Root locus method, bode-frequency analysis method and some methods like this can be used for this calculation. But these methods have complex mathematical calculations, and

60、also system feedback and system’s disturbations can not be measured momentary </p><p>  Program algorithm for PLCs is given in Figure 8. The algorithm consists of two start options: one is working with recen

61、t parameters which are calculated before; other option is working with new parameters. In this option, program finds new PID parameters for system. Because of Ziegler-Nichols method is applicable for open-loop systems, p

62、rogram first cancels system feedback and waits the system response to settle. When the system output is reset, program records system’s momentary input and Then </p><p>  If the step signal smaller than 10%,

63、 system parameters can not be determined reasonable. After applying the step signal, program waits until the system output to settle at the output value. When the system output is stable, program calculates PID parameter

64、s using Ziegler-Nichols process reaction method and sends them to PID parameter input. When PID parameters are loaded, program attaches system feedback and PID controller. Thus, system starts to work with PID controller.

65、 </p><p>  To clarify, necessary steps are given in a sequence below:</p><p>  Run the system in open-loop mode</p><p>  Wait until the system output becomes stable</p><

66、p>  Record system input and output</p><p>  Apply a step input to system (larger than %10 of recent input)</p><p>  Wait until the system output becomes stable</p><p>  Calculate

67、 PID parameters and work with PID controller.</p><p>  Adaptive Control</p><p>  In everyday language, “to adapt” means to change a behavior to conform to new circumstances. Intuitively, an adap

68、tive controller is thus a controller that can modify its behavior in response to changes in the dynamics of the process and the character of the disturbances. </p><p>  In section 3, the Ziegler Nichols proc

69、ess reaction method gave three constant parameters of PID controller; Kc, Ti and Td. However, some system responses can be unpredictable, and these PID parameters can not work efficiently. Also, adaptive control can help

70、 deliver both stability and good response. The approach changes the control algorithm coefficients in real time to compensate for variations in the system itself. In general, the controller periodically monitors the syst

71、em transfer function a</p><p>  Adjusting Adaptive Algorithm to the Self-Tuning Program</p><p>  Self – Tune parameters, Adaptive algorithm and PI-D controller are related with each other like i

72、n figure 10. As said before, derivative parameter directly goes to PI-D controller, gain and integral terms firstly go adaptive algorithm and then PI-D controller.</p><p>  Conclusions</p><p>  

73、In this article Adaptive PI-D controller - using Ziegler Nichols based Self Tuning method’s parameters- is presented and its application on a programmable logic controller is given. For this purpose first of all at the i

74、mplementation part industrial PID algorithm is used where PID’s derivative input is taken from system output and filtered, so high-frequency signals’ effect is minimized. Then, integral term is confirmed to obtain a more

75、 robust PID structure and finally the output of PID is limit</p><p>  For implementing the developed algorithm a Siemens S7-400 CPU 412-2 DP PLC is selected as a controller due to its good performance and it

76、s developed structure. Afterwards the developed PLC algorithm is simulated on two second order systems. The results showed that Adaptive PI-D controller has a good performance on a large scale of ratio of industrial sys

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論