2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、<p>  航空工業(yè)焊接的新趨勢</p><p>  麻省理工學院 帕特里西奧樓門德斯</p><p><b>  摘要:</b></p><p>  焊接在航空業(yè)正經歷著令人振奮的發(fā)展。廣泛應用計算機和改善設備和設計新材料塑造的方式焊接,是實施過程和產品正在設計的主要要方法。有一種普遍的趨勢,減少鉚釘在在飛機結構組件的使用有一種

2、普遍的趨勢. 擴散焊和激光,電子束焊接是在加入材料情況下使用的。軍用飛機的電子束焊接在加入鈦合金下使用,并且有擴大趨勢.大型商業(yè)飛機的激光束焊接,慢慢取代鉚釘在大部份機身上使用, 航天工業(yè)也顯示:航空業(yè)界承諾一些新的進程的發(fā)展.其中包括:攪拌摩擦焊接和變極性等離子弧焊,這已經被應用火箭的關鍵部件上, 目前, 鑄件在飛機有日益增加的趨勢,這樣開辟了新的機遇和挑戰(zhàn). 而一些進程,包括擴散焊接鋁合金和線性摩擦加入葉片盤。似乎并沒有得到廣泛應用

3、. 本文側重于焊接的基礎,就其影響的焊接航空組件,以及對趨勢的行業(yè)的預計,因此是一項基本的水平。維修焊接,無損檢測,釬焊是本文章討論的范圍。</p><p><b>  導言:</b></p><p>  焊接的過程,就是人類一個古老的處理金屬的過程.其在歷史上的大多數的時間,它一直被視為一個粗淺的藝術或施工技術. 19世紀推動現代焊接新的發(fā)展而且發(fā)展趨勢比以往任何時

4、候都要快. 不同的焊接工藝可以由不同強度的熱源融合.也揭示了許多重要的趨勢當中, 滲透率衡量的比例,深度,寬度(四/瓦特)焊縫截面的急劇增加與熱源強度有關。這允許較高的焊接速度,使得焊接過程更有效率. 一個更有效率的過程中在焊接過程中需要較少的熱輸入,從而形成一個強大的焊縫 . 較小的熱源,移動速度更快,也意味著停留時間在任何特定的點的時間大大減少. 如果停留時間太短,在過程中,無法手動控制,必須加以自動化, 最低的時間,仍然是可以手動

5、控制的對應的電弧焊接(約0.3秒). 因此,他們只能用自動控制熱源更激烈的的焊接. 焊接工藝在更加集中熱源的地方創(chuàng)建一個較小的熱影響區(qū)( HAZ組織)和形成較低后焊縫扭曲力. 它可以推斷:所帶來的好處是: 更加集中熱源, 資本設備的費用大約與強度熱源成正比的.</p><p>  航空業(yè)的特點是:低單位生產,單位成本較高,在營運條件極其嚴重情況下,焊接就十分重要了, 這些特征對較昂貴的和更集中熱源如等離子弧,激光

6、束和電子束焊接作為焊接進程的選擇,是焊接的關鍵部件的重要選擇</p><p>  焊接過程在航空業(yè)中的使用.</p><p><b>  摩擦焊接)</b></p><p>  在這個過程中,通過機械變形加入金屬。既然沒有熔化,就不存在基礎的材料熔化-凝固現象的相關缺陷. 這個過程中可以加入鋁起落架組件,組成了一個比較簡單的橫截面. 性摩擦(微

7、動)焊接被認為是由通用電氣公司和普惠公司發(fā)明的一種替代,為制造和修理高溫合金盤為噴氣發(fā)動機. 雖然沒有透露這些進程,他們也會演變成商業(yè)應用.</p><p>  攪拌摩擦(攪拌摩擦焊)</p><p>  契維語在1991年發(fā)明了這一焊接方法, 這是一個堅實的焊接進程,通過機械變形加入金屬, 在這個過程中,圓柱等工具與異型探頭旋轉,慢慢地陷入了聯(lián)合線之間的兩塊資產負債表或板材,這樣就對接在

8、一起,這個過程可以焊接以前報告鋁合金飛機結構在使用. 實力焊縫與弧相比是弧30 % 或50 % . 在一些小熱影響區(qū)的地方,殘余應力,微觀結構也得到了改變. 波音公司出了1500萬美元的投資在使用攪拌摩擦焊焊接助推器為三角洲的范圍的國家運載火箭,這是美國的第一生產攪拌摩擦焊的地方. 1998年8月, 在德爾塔II,首次發(fā)射一個使用攪拌摩火箭. 這一進程目前正在考慮加入鋁berilium合金,如2005年,為中央智囊團的航天飛機,就得到了

9、應用。鈦合金也有其他航空用途. 作為攪拌摩擦焊的一種,為了更好地使用,它可以取代等離子弧焊(足)和電子束焊接(電子束焊接),在一些具體的應用中用鋁和用鈦是有分別。</p><p><b>  閃光焊</b></p><p>  為是一種在熔化過程中, 應用一對焊接接頭焊接在短期的內弧和壓力而作用的。這是能夠產生強大的焊縫的基礎材料. 這個過程可以焊接鋁和表面耐高溫合金

10、使用沒有特別準備或屏蔽氣體。它可以焊接各種復雜的截面, 這是用在航空業(yè)加入環(huán)噴氣發(fā)動機,主要是出于耐高溫合金和擠壓鋁構件的作用而考慮的。</p><p><b>  氣體金屬弧焊</b></p><p>  這個過程中,其中一個是世界上進心最熱門的焊接工藝,因為它的靈活性和低成本是呆以廣泛使用在航空業(yè). 缺點是大尺寸的熱源(處理流程,與如電子束焊接,運作)的焊縫有著不

11、太好的力學性能. 這個過程是在主要的焊接工藝用于建造該燃料和氧化劑坦克火箭( 2219為第一階段), 目前應用在自動焊接的葉片愛國者導彈上. 這些葉片由一個框架17-4 pH值超級不銹鋼組成,其中金屬薄板的相同的組成是welded8, 此應用程序的好處,從成本降低,而可靠性增強。</p><p>  鎢極氬弧焊(氬弧焊)</p><p>  氬弧焊可以使用比的GMAW更激烈的熱源. 因此,

12、它可以產生較小的焊縫,從而降低的成本。對于大多數結構,在應用這一過程中,不能與其他焊接方法如電子束焊接,激光焊接或等離子弧相焊接相單混用。氬弧焊是一起使用的GMAW與焊接在2014年和2219的鋁合金在燃料和氧化劑坦克在土星v rocket7使用. 梅塞施米特bölkow blohm在德國目前使用的GMAW為噴嘴延長鎳,阿麗亞娜發(fā)射vehicles9上也使用過這種焊接. 大部分的焊接主要表現在商用飛機及對管道及油管使用焊接.

13、這個過程也可以用在換熱器的核心上,噴氣發(fā)動機百葉窗和排氣外殼上,不銹鋼和inconel1無論是在商業(yè)和軍事都得到了使用. 不銹鋼葉片在多倫多也用在堵塞焊縫在愛國者導彈也得到了使用. 允許應用到航空焊接結構的組成部分包括弧長控制和救濟的應力用散熱器在焊接上, 這項技術,是由洛克希德馬丁公司在土衛(wèi)六四運載火箭上使用的. 它是一種通過測量電弧電壓來測量所期望的滲透率.這種技術在中國 北京航空制造技術研究所也得到了應用. 它已用于噴氣發(fā)動機案件

14、中的耐熱合金和火箭燃料箱的鋁合金。在這方面的技術,散熱器步道背后的焊接電弧就是這樣</p><p><b>  等離子弧焊</b></p><p>  使用constricted弧之間的nonconsumable電極和熔池(轉移?。┗蛑g的電極和制約噴嘴( nontransferred?。? 如果熱強度不夠高,這個過程是不可以運作,類似一個小孔模式,有人認為,激光或電

15、子束焊接,雖然與規(guī)模較小但滲透率最高. 這個過程是用于焊接的先進的固體火箭發(fā)動機,使用材料是惠普- 9 - 4 - 30鋼.</p><p>  其中一個最新的變化,就是霍巴特兄弟將這個過程如變極性等離子弧焊焊接( vppa )商品化. 這種變化在航空航天工業(yè)焊接較厚路段鋁合金,特別是為外部燃料箱的航天飛機得到了使用.這個過程中熔化的是在小孔模式中進行的.不好的一部分,是循環(huán)提供了一個陰極清洗鋁工件,而好的部分,

16、提供了理想的滲透和熔融金屬流. 測試結果表明,最佳占空比為這個過程中涉及的負序電流15-20 MS和一個積極的2-5的電流中,一個積極作用是:當前的30-80 1高于負序電流. 集中供熱原因是為了明顯減少角扭曲力.</p><p><b>  激光焊接</b></p><p>  這個過程, 優(yōu)勢是電子束焊接技術可以提供最集中的熱源焊接, 更高的精度,焊縫質量和規(guī)模較

17、小的扭曲. 這個過程是用于焊接噴氣發(fā)動機部件,其由耐熱合金制成,如hastelloy,激光加工燃燒在普惠公司噴氣發(fā)動機jt9d , pw4000 , pw2037和F - 100 - ○ – 22019得到了運用.</p><p>  激光焊接將很快取代鉚在空中客車318飛機中使用. 顯著的優(yōu)點是可以預期并取得的取代鉚接接頭的不足. 鉚,估計消費占制造業(yè)的40 %左右 .</p><p>

18、<b>  電子束焊接</b></p><p>  如上所述,高強度的電子束產生焊縫與熱影響區(qū)小,這個過程中的優(yōu)勢,電子束對熔融金屬的對接已沒有問題. 不過,它需要在真空中運作. 這一特點在使用這一進程中,特別適合焊接鈦合金而不能焊接在一個開放的氣體中的部件. 鈦合金被廣泛用于軍用飛機,因為它重量輕,強度高,性能在高溫下也較好. 應用電子束焊接,以焊接鈦部件的軍用飛機一直在不斷擴大. 塔員額

19、和機翼部件在Ti 6Al - 4V和f15戰(zhàn)斗機也得到了廣泛的應用. 機翼盒舉行可變幾何的翅膀,在旋風式戰(zhàn)斗機,如f14 “雄貓”得到了使用. 在控制系統(tǒng)中,以及在以及在實施電腦自動化中有著顯著的差異. 這項新技術,使連續(xù)一通焊縫超過曲線和曲面,并通過不同厚度來進行. 波音公司的F - 22的關鍵結構部件現在用鈦電子束焊接這種方式來焊接的. F - 22是第一次飛機在60年的特點焊接機進行的. 前的前身用了鉚接鋁.將他們焊接在一起. 最

20、近的應用的鈦鑄件在F - 22戰(zhàn)斗機的焊接出現了問題,因此延遲開始生產時間至少五個月. 俄羅斯能源火箭應用電子束焊接建造該氧氣和油缸. 由于龐大真空,是造成當地密封與鐵電產生影響.</p><p><b>  擴散焊</b></p><p>  這是一個固態(tài)焊接,在焊接過程中在焊縫所在處產生應用的壓力,在高溫下,該件沒有宏觀變形或相對變化. 航空業(yè)是主要用戶是dfw,

21、 這個過程已證明,超塑成形( SPF )則鈦合金特別有用相結合. 在這種情況下,復雜的幾何形狀可以得到在短短得到應用. 在某些情況下替代鉚接鋁構件,從而使成本降價. 傳統(tǒng)的制作由500緊固件構成的16個部分,并一起進行. 有人建議,以取代設計,整體加筋所產生的SPF / dfw會得到很好的作用. 應用的SPF / dfw可以減少了原來的鉚接的鋁材構件,來自76個詳細的零件和1000緊固件,以鈦金屬版只有14個細節(jié)和90緊固件與總成本可節(jié)

22、省30 %左右. 成功的SPF / dfw鈦刺激了大量的研究與目標,完成了類似的過程與鋁焊接過程. dfw鈦和鋁鈦根本區(qū)別是鈦可以解散其氧化物而鋁不可以,因此, 剩余氧化氮在界面形成鋁聯(lián)合,極大地降低了力量的焊接在焊接中的擴散. 這個問題已妨礙了SPF級/ dfw鋁的普遍采用.</p><p><b>  結論</b></p><p>  驅動的成本和重量的積累,技術

23、進步使得更換鉚釘和緊固件與焊縫得到緊密的結合. 在商用飛機中,一些鉚接鋁構件由SPF級/ dfw鈦的替代品( SPF級/ dfw鋁仍處于試驗階段)形成了一種趨勢. 在不久的將來,空中客車飛機( a318和a3xx )功能將機身出現激光焊接,以在飛機上的形成. 展望進一步,邁向未來, 這是有可能將攪拌摩擦焊用于對飛機結構組件的焊接, 它可以可靠地加入合金系列等材料.</p><p>  變極性等離子弧焊焊接( vp

24、pa ) ,原本是設計為空間應用可能深入飛機工業(yè)入中的厚度較厚的鋁。實施計算機控制使用電子束焊接鈦合金的應用程序在過去是不可行的,制造業(yè)等焊接第一次為噴氣式戰(zhàn)斗機機身中使用,電子束焊接鈦在未來的軍用飛機的運用將增加,這種預期是合理的,在飛機使用鑄件正在增加,這必將帶來新的挑戰(zhàn)。 </p><p>  Proceedings of the conference “New Trends for the Manufac

25、turing in the AeronauticIndustry”, Hegan/Inasmet, San Sebastián, Spain, May 24-25, 2000, pp. 21-38.</p><p>  NEW TRENDS IN WELDING IN THE AERONAUTIC INDUSTRY </p><p>  Patricio F. Mendez &l

26、t;/p><p>  Massachusetts Institute of Technology </p><p>  Cambridge, MA 02139, USA </p><p><b>  Abstract </b></p><p>  Welding in the aeronautic industry is e

27、xperiencing exciting developments. The widespread application of computers and the improved knowledge and design of new materials are shaping the way welding is implemented and process and product are being designed. The

28、re is a general trend to reduce the use of rivets in structural components in airplanes. Diffusion welding and laser, and electron beam welding are used to join the materials in these cases. In military airplanes electro

29、n beam welding is con</p><p>  Introduction </p><p>  Welding is a process almost as old as the processing of metals by humans. For most of its history it has been regarded as an obscure art or

30、a crude construction technique. New discoveries and the availability of electric energy in the nineteenth century pushed the development of modern welding with an ever-accelerating rate (Figure 1). </p><p> 

31、 The different welding processes can be ordered by the intensity of the heat source used for fusion (Figure 2). This ordering reveals many important trends among them. The penetration measured as the ratio of depth to wi

32、dth (d/w) of the weld cross section increases dramatically with the intensity of the heat source. This makes the welding process more efficient and allows for higher welding speeds. A more efficient process requires less

33、 heat input for the same joint, resulting in a stronger weld,</p><p>  The nature of welding in the aeronautical industry is characterized by low unit production, high unit cost, extreme reliability, and sev

34、ere operating conditions1. These characteristics point towards the more expensive and more concentrated heat sources such as plasma arc, laser beam and electron beam welding as the processes of choice for welding of crit

35、ical components. </p><p>  Welding Processes used in the Aeronautic Industry </p><p>  Friction Welding (FRW) </p><p>  In this process, the joining of the metals is achieved throug

36、h mechanical deformation. Since there is no melting, defects associated with melting-solidification phenomena are not present and unions as strong as the base material can be made. This process can join components with a

37、 relatively simple cross section. It is used for the joining of aluminum landing gear components. Linear friction (fretting) welding was considered by General Electric and Pratt & Whitney as an alternative for the ma

38、nuf</p><p>  Friction Stir (FSW) </p><p>  TWI invented this process in 1991. It is a solid-state process that joins metals through mechanical deformation. In this process a cylindrical, shoulde

39、red tool with a profiled probe is rotated and slowly plunged into the joint line between two pieces of sheet or plate material, which are butted together, as shown in Figure 9. This process can weld previously reported u

40、nweldable aluminum alloys such as the 2xxx and 7xxx series used in aircraft structures. The strength of the weld is 30%50% than </p><p>  Boeing made a $15 million investment in the use of FSW to weld the b

41、ooster core tanks for the Delta range of space launch vehicles, which was the first production FSW in the USA5. The first launch of a FSW tank in Delta II rocket happened in August 19993. This process is currently being

42、considered for the joining of aluminum–berilium alloys such as 2195 for the central tank of the Space shuttle, and also titanium alloys for other aeronautical uses. As FSW becomes better established, it can repla</p&g

43、t;<p>  Flash Welding (FW) </p><p>  FW is a melting and joining process in which a butt joint is welded by the flashing action of a short arc and by the application of pressure. It is capable of prod

44、ucing welds as strong as the base material. This process can weld aluminum and temperature resistant alloys without especial surface preparation or shielding gas. It can join sections with complicated cross sections, and

45、 it is used in the aeronautical industry to join rings for jet engines made out of temperature resistant alloys and e</p><p>  Gas Metal Arc Welding (GMAW) </p><p>  This process, one of the mos

46、t popular welding processes in the world because its flexibility and low cost is not used extensively in the aeronautic industry. The drawback for its is that the large size of the heat source (compared with processes su

47、ch as EBW, LW, PAW) causes the welds to have poor mechanical properties. This process was the main welding process used for the construction of the fuel and oxidizer tanks for the Saturn V rocket (2219 aluminum alloy for

48、 the first stage)7. One of the c</p><p>  Gas Tungsten Arc Welding (GTAW) </p><p>  GTAW can use a more intense heat source than GMAW, therefore it can produce welds with less distortion at a si

49、milar cost. For most structural critical applications this process cannot compete with other welding methods such as electron beam welding, laser beam welding or plasma arc welding. GTAW was used together with GMAW to we

50、ld the 2014 and 2219 aluminum alloy in the fuel and oxidizer tanks in the Saturn V rocket7. Messerschmitt Bölkow Blohm in Germany currently uses GMAW for the nozzle exten</p><p>  Plasma Arc Welding (PA

51、W) </p><p>  PAW uses a constricted arc between a nonconsumable electrode and the weld pool (transferred arc) or between the electrode and the constricting nozzle (nontransferred arc). If the heat intensity

52、of the plasma is high enough, this process can operate in a keyhole mode, similar to that of laser or electron beam welding, although with smaller maximum penetration. A schematic of PAW is shown in Figure 12. This proce

53、ss is used for the welding of the Advanced Solid Rocket Motor (ASRM) for the Space Shu</p><p>  One of the latest variations of this process is variable-polarity plasma arc welding (VPPA) commercialized by H

54、obart Brothers. This variation was developed by the aerospace industry for welding thicker sections of alloy aluminum, specifically for the external fuel tank of the space shuttle16. In this process the melting is in the

55、 keyhole mode. The negative part of the cycle provides a cathodic cleaning of the aluminum workpiece, while the positive portion provides the desired penetration and mol</p><p>  Laser Beam Welding (LBW) <

56、;/p><p>  This process, together with electron beam welding can deliver the most concentrated heat sources for welding, with the advantages of higher accuracy and weld quality and smaller distortions. This proc

57、ess is used for welding and drilling of jet engine components made of heat resistant alloys such as Hastelloy X. Laser-processed combustors are used in the Pratt & Whitney jet engines JT9D, PW4000, PW2037 and F-100-P

58、W-22019 </p><p>  Laser beam welding will soon replace riveting in the joining of stringers to the skin plate in the Airbus 318 and 3XX aircraft20. A schematic comparing a riveted and a welded stringer is sh

59、own in Figure 14. Significant savings are expected to be made by replacing riveted joints by LBW. Riveting is estimated to consume 40% of the total manufacturing man-hours of the aircraft structure4. </p><p>

60、;  Electron Beam Welding (EBW) </p><p>  As mentioned above, the high intensity of the electron beam generates welds with small HAZ and little distortion as shown in Figure 5 and Figure 6. This process prese

61、nts the advantage over LBW that it has no problems with beam reflection on the molten metal; however, it needs to operate in a vacuum. This characteristic makes this process especially suitable for the welding of titaniu

62、m alloys that cannot be welded in an open atmosphere. Titanium alloys are widely used in military aircraft because</p><p>  A remarkable application of EBW is in the construction of the oxygen and fuel tanks

63、 of the Russian Energia rocket (Figure 17). Due to the large size of the tanks, the vacuum is created locally, and sealed with ferroelectric liquids24. </p><p>  Diffusion Welding (DFW) </p><p>

64、  It is a solid-state welding process that produces a weld by the application of pressure at elevated temperature with no macroscopic deformation or relative motion of the pieces. The aeronautic industry is the major use

65、r of DFW25. This process has proven particularly useful when combined with the superplastic forming (SPF) of titanium alloys. In this case, complicated geometries can be obtained in just one manufacturing step as shown i

66、n Figure 18. The quality and low cost of the joint enables in </p><p>  Conclusions </p><p>  Driven by cost and weight savings, technological progress is moving in the direction of replacing ri

67、vets and fasteners with welds. In commercial aircraft this trend is already in motion with the replacement of some riveted aluminum components by SPF/DFW titanium substitutes (SPF/DFW of aluminum is still at an experimen

68、tal stage). In the near future, Airbus planes (A318 and A3XX) will feature fuselage stringers laser welded to the airplane skin. Looking further into the future, it is likely that </p><p>  Variable polarity

69、 plasma arc welding (VPPA), originally designed for space applications might pervade into the airplane industry for the joining of medium thickness sections of aluminum. The implementation of computer control to electron

70、 beam enabled the use of welding of titanium alloys in applications that were no feasible in the past, such as manufacturing a welded fuselage for the first time for a jet fighter (the F-22). It is reasonable to expect t

71、hat the amount and criticality of EBW of ti</p><p>  References </p><p>  Shaw, C.B. Welding Research for Aerospace in USA.in International Congress on Welding Research. 1984. Boston, MA. </p

72、><p>  Irving, B., Sparks Begin to fly in Nonconventional Friction Welding and Surfacing. Welding Journal, May 1993: p. 37-40. </p><p>  Boeing, http://www.boeing.com , 2000 </p><p>  

73、4.Welded Aluminium Aircraft Structures Ready for Take Off. Welding and Metal Fabrication, September 1998: </p><p>  p. 16-17. </p><p>  The Welding Institute, http://www.twi.co.uk , September,

74、1999 </p><p>  Kuchuk-Yatsenko, S.I., V.T. Cherednichok, and L.A. Semenov. The Flash-Butt Welding of Aluminium Alloys. in Welding in Space and the Construction of Space Vehicles by Welding. 1991. New Carrolt

75、on, MD: American Welding Society. </p><p>  Masubuchi, K., Integration of NASA-Sponsored Studies on Aluminum Welding. NASA CR-2064, 1972, NASA, Washington, DC. </p><p>  Irving, B., GTA Welders

76、Put the Finishing Touches on the Fins for the Patriot Missile. Welding Journal, may 1991: p. 71-74. </p><p>  Wolf,D.B.and R.C. Nicolay. Welded Nozzle Extension for Ariane Launch Vehicles.in Welding in Space

77、 and the Construction of Space Vehicles by Welding. 1991. New Carrolton, MD: American Welding Society. </p><p>  Irving, B., EB Welding Joins the Titanium Fuselage of Boeing's F-22 Fighter. Welding Journ

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論