版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p><b> 附錄A 譯文</b></p><p> 附錄A1 DISF302二次調(diào)節(jié)伺服加載系統(tǒng)的耦合影響</p><p><b> 0引言 </b></p><p> 二次調(diào)節(jié)伺服加載系統(tǒng)是近年來(lái)發(fā)展起來(lái)的一種新型加載技術(shù),它適用于各種發(fā)動(dòng)機(jī)、變速箱、車(chē)輛傳動(dòng)橋等旋轉(zhuǎn)試件的模擬加載試驗(yàn)。同傳統(tǒng)的
2、液壓加載系統(tǒng)相比,這種加載系統(tǒng)具有能量可回收、效率高、動(dòng)態(tài)性能好、控制靈活可靠等一系列優(yōu)點(diǎn)。但這兩種加載系統(tǒng)存在液壓和機(jī)械兩種耦合干擾問(wèn)題,這兩種耦合干擾都將給系統(tǒng)帶來(lái)不利的影響。本文通過(guò)系統(tǒng)建模與仿真,詳細(xì)分析了液壓耦合和機(jī)械耦合對(duì)系統(tǒng)控制性能的影響。</p><p> 1 系統(tǒng)原理和數(shù)學(xué)模型</p><p> 二次調(diào)節(jié)伺服加載系統(tǒng)原理如圖1。</p><p>
3、; 2 加載系統(tǒng)數(shù)學(xué)模型</p><p> 對(duì)圖1的二次調(diào)節(jié)伺服加載系統(tǒng)建立數(shù)學(xué)模型,并經(jīng)適當(dāng)簡(jiǎn)化、整理,將其表示成方塊圖形式,如圖2。由圖2可見(jiàn),該系統(tǒng)為兩輸入兩輸出系統(tǒng),Ni ~No部分為對(duì)應(yīng)于二次元件9的轉(zhuǎn)速控制系統(tǒng),Mi~Mo部分為對(duì)應(yīng)于二次元件15的轉(zhuǎn)矩控制系統(tǒng)。</p><p> 圖中的環(huán)節(jié)Gn1(S) 和Gm1(S) ,分別為轉(zhuǎn)速控制系統(tǒng)和轉(zhuǎn)矩控制系統(tǒng)的電液伺服閥8(1
4、7)、變量液壓缸7(16)、位移傳感器6(18)、二次元件9(15)的綜合傳遞函數(shù),若兩系統(tǒng)各元件(轉(zhuǎn)速傳感器10和轉(zhuǎn)矩傳感器13除外)相同,則Gn1(S)和Gm1(S) 相同,其具體形式為</p><p><b> = </b></p><p><b> 式中</b></p><p> Ksv、ωsv and ζs
5、v為電液伺服閥的流量增益、固有頻率和阻尼比;A和Ymax 為變量液壓缸活塞的有效作用面積和最大位移:Vmax 為二次元件的最大排量;PL為恒壓網(wǎng)絡(luò)的負(fù)載壓力;Ky為位移傳感器的變換系數(shù)。G n2(S )為加載對(duì)象l2(包括二次元件9、轉(zhuǎn)速傳感器10、轉(zhuǎn)矩傳感器13)的慣性阻尼環(huán)節(jié),其傳遞函數(shù)形式為</p><p><b> = = </b></p><p><
6、b> 式中</b></p><p> Jn 和Rn 為加載對(duì)象l2的等效轉(zhuǎn)動(dòng)慣量和等效阻尼系數(shù)。Gm2(S)為二次元件15的慣性阻尼環(huán)節(jié),其傳遞函數(shù)形式為</p><p><b> = = </b></p><p><b> 式中</b></p><p> Jn和Rn 為
7、二次元件15的轉(zhuǎn)動(dòng)慣量和阻尼系數(shù)。</p><p> Ni、No為轉(zhuǎn)速控制系統(tǒng)的輸入、輸出轉(zhuǎn)速;Mi、Mo為轉(zhuǎn)矩控制系統(tǒng)的輸入、輸出轉(zhuǎn)矩。Kfn 、Kfm 為轉(zhuǎn)速傳感器10、轉(zhuǎn)矩傳感器13的變換系數(shù)。</p><p> 3 耦合干擾對(duì)系統(tǒng)控制性能的影響。</p><p> 由圖1可以看出,兩個(gè)二次元件一端是以壓力耦合方式并聯(lián)于恒壓網(wǎng)絡(luò)上,而另一端是通過(guò)加載對(duì)象
8、、轉(zhuǎn)速和轉(zhuǎn)矩傳感器,以機(jī)械耦合方式聯(lián)于一體的,因此這種加載系統(tǒng)存在液壓耦合和機(jī)械耦合。</p><p> 為了進(jìn)一步分析耦合干擾對(duì)系統(tǒng)控制性能的影響,在負(fù)載壓力為正弦波動(dòng)、輸出轉(zhuǎn)速N0和輸出轉(zhuǎn)矩M0為方波波動(dòng)情況下,對(duì)如圖2的系統(tǒng)模型進(jìn)行仿真,仿真結(jié)果如圖3、圖4、圖5。</p><p> 1輸出轉(zhuǎn)速 2 輸出轉(zhuǎn)矩</p><p> 圖3負(fù)載壓力波
9、動(dòng)下的仿真曲線(xiàn)。圖3 a、b、c、d中,曲線(xiàn)l為不同負(fù)載壓力波動(dòng)干擾下轉(zhuǎn)速控制系統(tǒng)輸出轉(zhuǎn)速的階躍響應(yīng),壓力波動(dòng)幅度分別為額定壓力值(29.5 MPa)的0、5.0%、10.0%、20.0%;曲線(xiàn)2為以上各種壓力波動(dòng)干擾下轉(zhuǎn)矩控制系統(tǒng)輸出轉(zhuǎn)矩的階躍響應(yīng)。由曲線(xiàn)l可得,以上各種壓力波動(dòng)干擾下輸出轉(zhuǎn)速的波動(dòng)誤差分別為0.1%、3.2%、5.0%、8.0%;由曲線(xiàn)2可得,相同壓力波動(dòng)干擾下輸出轉(zhuǎn)矩的波動(dòng)誤差分別為0.1%、5.0%、9.5%、2
10、0.0%。</p><p> 可見(jiàn),轉(zhuǎn)速控制系統(tǒng)和轉(zhuǎn)矩控制系統(tǒng)的控制性能,同時(shí)受到負(fù)載壓力波動(dòng)(液壓耦合)干擾的影響,隨負(fù)載壓力波動(dòng)幅度的增大,兩控制系統(tǒng)的控制精度都明顯變差,且轉(zhuǎn)矩控制系統(tǒng)所受影響大于轉(zhuǎn)速控制系統(tǒng)。</p><p> 圖4 a、b、c、d中,曲線(xiàn)1為轉(zhuǎn)速控制系統(tǒng)輸出轉(zhuǎn)速的方波響應(yīng),它作為轉(zhuǎn)矩控制系統(tǒng)的波動(dòng)干擾,其波動(dòng)幅度分別為設(shè)定值(500r/m)的0、l0.0%、2
11、0.0%、40.0%;曲線(xiàn)2為以上各種轉(zhuǎn)速波動(dòng)干擾下轉(zhuǎn)矩控制系統(tǒng)輸出轉(zhuǎn)矩的階躍響應(yīng)。由曲線(xiàn)2</p><p> 可得,以上各種轉(zhuǎn)速波動(dòng)干擾下輸出轉(zhuǎn)矩的波動(dòng)誤差分別為0.1%、2.0%、4.0%、5.3%。可見(jiàn),轉(zhuǎn)矩控制系統(tǒng)的控制性能受到轉(zhuǎn)速控制系統(tǒng)輸出轉(zhuǎn)速波動(dòng)(機(jī)械耦合)干擾的影響,隨輸出轉(zhuǎn)速波動(dòng)幅度的增大,轉(zhuǎn)矩控制系統(tǒng)的控制精度變差。</p><p> 圖5 a、b、c、d中,曲線(xiàn)2
12、為轉(zhuǎn)矩控制系統(tǒng)輸出轉(zhuǎn)矩的方波響應(yīng),作為轉(zhuǎn)速控制系統(tǒng)的波動(dòng)干擾,其波動(dòng)幅度分別為設(shè)定值(300N.m)的0、10.0%、30.0%、50.0%;曲線(xiàn)1為以上各種轉(zhuǎn)矩波動(dòng)干擾下轉(zhuǎn)速控制系統(tǒng)輸出轉(zhuǎn)速的階躍響應(yīng)。</p><p> 由曲線(xiàn)1可得,以上各種轉(zhuǎn)矩波動(dòng)干擾下輸出轉(zhuǎn)速的波動(dòng)誤差分別為0、4.0%、8.0%、13.6%。可見(jiàn),轉(zhuǎn)速控制系統(tǒng)的控制性能受到轉(zhuǎn)矩控制系統(tǒng)輸出轉(zhuǎn)矩波動(dòng)(機(jī)械耦合)干擾的影響,隨輸出轉(zhuǎn)矩波動(dòng)
13、幅度的增大,轉(zhuǎn)速控制系統(tǒng)的控制精度明顯變差。將圖4與圖5比較還可見(jiàn),轉(zhuǎn)矩波動(dòng)對(duì)轉(zhuǎn)速控制系統(tǒng)的干擾影響明顯大于轉(zhuǎn)速波動(dòng)對(duì)轉(zhuǎn)矩控制系統(tǒng)的干擾影響。</p><p><b> 4 結(jié) 論</b></p><p> 二次調(diào)節(jié)伺服加載系統(tǒng)存在兩種耦合,一種是液壓耦合,一種是機(jī)械耦合。這兩種耦合都將對(duì)系統(tǒng)的控制性能產(chǎn)生干擾影響,液壓耦合干擾的影響取決于負(fù)載壓力波動(dòng),機(jī)械耦合干
14、擾的影響取決于輸出轉(zhuǎn)矩和輸出轉(zhuǎn)速波動(dòng)。</p><p> 對(duì)于無(wú)任何補(bǔ)償?shù)钠胀≒ID控制系統(tǒng)來(lái)講,隨著負(fù)載壓力、輸出轉(zhuǎn)矩和輸出轉(zhuǎn)速的波動(dòng)幅度的增大,系統(tǒng)的控制精度明顯變差,且轉(zhuǎn)矩控制系統(tǒng)受負(fù)載壓力波動(dòng)的影響大于轉(zhuǎn)速控制系統(tǒng),轉(zhuǎn)矩波動(dòng)對(duì)轉(zhuǎn)速控制系統(tǒng)的影響大于轉(zhuǎn)速波動(dòng)對(duì)轉(zhuǎn)矩控制系統(tǒng)的影響。采用魯棒補(bǔ)償方法,即在普通的PID控制基礎(chǔ)上,加入歸零因子環(huán)節(jié)和低通濾波器,對(duì)控制系統(tǒng)進(jìn)行改進(jìn),可有效消除液壓耦合(壓力波動(dòng))和
15、機(jī)械耦合(轉(zhuǎn)速和轉(zhuǎn)矩波動(dòng))干擾的影響,實(shí)現(xiàn)轉(zhuǎn)速控制系統(tǒng)和轉(zhuǎn)矩控制系統(tǒng)之間的解耦,并同時(shí)使系統(tǒng)獲得很強(qiáng)的魯棒性,從而大大地提高系統(tǒng)的控制性能。</p><p> 附錄A2 二次調(diào)節(jié)靜液傳動(dòng)技術(shù)</p><p> 1 二次調(diào)節(jié)靜液傳動(dòng)技術(shù),是對(duì)液壓能與機(jī)械能相互轉(zhuǎn)換的液壓元件進(jìn)行調(diào)節(jié),來(lái)實(shí)現(xiàn)能量轉(zhuǎn)換和傳遞的技術(shù)。如果把液壓系統(tǒng)中機(jī)械能轉(zhuǎn)化成液壓能的元件(液壓泵),稱(chēng)為一次元件或初級(jí)元件,則
16、把液壓能和機(jī)械能可以互相轉(zhuǎn)換的元件(液壓馬達(dá)/泵),稱(chēng)為二次元件或次級(jí)元件3,是對(duì)液壓傳動(dòng)過(guò)程進(jìn)行能量的回收和重新利用,并從宏觀的角度對(duì)靜液傳動(dòng)系統(tǒng)進(jìn)行合理的配置以及改善其控制特性。</p><p> 基于能量回收與重新利用而提出的二次調(diào)節(jié)概念,對(duì)改善液壓傳動(dòng)系統(tǒng)效率非常有效。它不但能實(shí)現(xiàn)功率適應(yīng),而且還可以對(duì)工作機(jī)構(gòu)的制動(dòng)動(dòng)能和重力勢(shì)能進(jìn)行回收與重新利用。同時(shí),在網(wǎng)絡(luò)上還可以連接多個(gè)互不相關(guān)的負(fù)載,在驅(qū)動(dòng)負(fù)載
17、的二次元件上直接控制其轉(zhuǎn)角、轉(zhuǎn)速、轉(zhuǎn)矩和功率,或通過(guò)液壓變壓器來(lái)控制其位移和速度。二次調(diào)節(jié)靜液傳動(dòng)系統(tǒng)在控制與功能上的特點(diǎn),為解決液壓傳動(dòng)技術(shù)中目前尚未解決的某些傳動(dòng)問(wèn)題和替代有關(guān)傳動(dòng)技術(shù)提供了有利的條件。</p><p> 2 二次調(diào)節(jié)靜液傳動(dòng)系統(tǒng)的組成</p><p> 二次調(diào)節(jié)靜液傳動(dòng)技術(shù),是在恒壓網(wǎng)絡(luò)中對(duì)二次元件(液壓泵/馬達(dá))進(jìn)行調(diào)節(jié),通過(guò)改變其排量來(lái)適應(yīng)負(fù)載的變化。二次調(diào)節(jié)
18、靜液傳動(dòng)系統(tǒng)的組成如圖1所示,它主要由二次元件2、變量控制缸8、電液伺服(比例)閥7(也可以是其他控制方式)等組成。</p><p> 恒壓油源部分由單向截止閥4、恒壓變量泵和液壓蓄能器5組成。由于恒壓油源部分的動(dòng)態(tài)特性較好,所以在對(duì)二次調(diào)節(jié)靜液傳動(dòng)系統(tǒng)進(jìn)行分析與研究時(shí),可以不考慮油源部分的動(dòng)態(tài)性能對(duì)系統(tǒng)輸出的影響,并且可認(rèn)為恒壓網(wǎng)絡(luò)中的壓力基本保持恒定不變。這樣不僅能簡(jiǎn)化研究的復(fù)雜性,同時(shí)也能保證研究結(jié)果的準(zhǔn)
19、確性。</p><p> 3 二次調(diào)節(jié)靜液傳動(dòng)系統(tǒng)的特點(diǎn)</p><p> 圖1所示的二次調(diào)節(jié)靜液傳動(dòng)系統(tǒng)具有如下特點(diǎn):</p><p> 1)它是壓力耦聯(lián)系統(tǒng),系統(tǒng)中的壓力基本保持不變,恒壓油源的工作壓力直接與二次元件相連。因此,在系統(tǒng)中沒(méi)有原理性的節(jié)流損失,提高了系統(tǒng)效率。</p><p> 2)通過(guò)改變二次元件排量 z的大小可改
20、變輸出轉(zhuǎn)矩 大小,從而建立起與之相適應(yīng)的轉(zhuǎn)速;通過(guò)改變二次元件斜盤(pán)的擺動(dòng)方向來(lái)改變二次元件的旋轉(zhuǎn)方向。液壓泵/馬達(dá)可在四個(gè)象限內(nèi)運(yùn)行工作,二次元件既可以工作在液壓馬達(dá)工況,也可以工作在液壓泵工況,為能量的回收和再利用創(chuàng)造了條件。</p><p> 3)液壓蓄能器回收的液壓能可滿(mǎn)足間歇性大功率的需要,在設(shè)備的啟動(dòng)過(guò)程中能利用液壓蓄能器釋放出的能量來(lái)加速啟動(dòng)過(guò)程,提高了液壓系統(tǒng)的工作效率。</p>&
21、lt;p> l一負(fù)載;2一二次元件;3一光電編碼器;4一單向截止閥;5-液壓蓄</p><p> 能器;6一過(guò)濾器;7一電液伺服閥;8一變量控制缸;9一斜盤(pán)擺角傳</p><p> 感器;10一速度控制器;l1一擺角位置控制器;12-控制放大器</p><p> 圖1 二次調(diào)節(jié)靜液傳動(dòng)系統(tǒng)工作原理圖</p><p> 4)二次
22、元件的排量 :隨外負(fù)載轉(zhuǎn)矩 變化而變化,并能達(dá)到功率匹配。</p><p> 5)液壓蓄能器使系統(tǒng)不會(huì)形成壓力尖峰,可減少壓力限制元件的發(fā)熱,降低用于系統(tǒng)冷卻的功率消耗。</p><p> 6)二次元件工作于恒壓網(wǎng)絡(luò),可以并聯(lián)多個(gè)互不相關(guān)的負(fù)載,實(shí)現(xiàn)互不相關(guān)的控制規(guī)律,而液壓泵站只需按負(fù)載的平均功率之和進(jìn)行設(shè)計(jì)安裝。</p><p> 7)二次調(diào)節(jié)靜液傳動(dòng)系統(tǒng)
23、提供了新的控制規(guī)律和控制結(jié)構(gòu)。可實(shí)現(xiàn)轉(zhuǎn)速控制、轉(zhuǎn)角控制、轉(zhuǎn)矩控制和功率控制。</p><p> 4 二次調(diào)節(jié)靜液傳動(dòng)系統(tǒng)的工作原理</p><p> 在圖1所示的二次調(diào)節(jié)靜液傳動(dòng)系統(tǒng)中,二次元件2的排量由變量控制缸8控制,變量控制缸8的流量通過(guò)電液伺服(比例)閥7控制。二次元件2轉(zhuǎn)速的變化,可由與二次元件轉(zhuǎn)軸相連的光電編碼器3(或其它測(cè)量元件)測(cè)出并轉(zhuǎn)送給速度控制器IO,斜盤(pán)擺角的變化
24、由斜盤(pán)擺角傳感器9測(cè)出并轉(zhuǎn)送給擺角位置控制器11,控制器放大器12根據(jù)一定的控制方法,產(chǎn)生控制信號(hào)控制電液伺服(比例)閥7,再控制變量控制缸的變化,用來(lái)控制二次元件2的斜盤(pán)傾角和方向,進(jìn)而改變二次元件2的排量,從而使系統(tǒng)穩(wěn)定地工作在某一工作狀態(tài)。這個(gè)平衡狀態(tài)可產(chǎn)生于任何的設(shè)定轉(zhuǎn)速,通過(guò)改變電液伺服 (比例)閥7的控制信號(hào),可以使二次元件的轉(zhuǎn)速無(wú)級(jí)變化。</p><p> 5 二次調(diào)節(jié)靜液傳動(dòng)系統(tǒng)的控制方式<
25、;/p><p> 在二次調(diào)節(jié)靜液傳動(dòng)系統(tǒng)中,雖然控制的參數(shù) (位置、轉(zhuǎn)速、轉(zhuǎn)矩或功率)不同,但最終執(zhí)行元件都是相同的,并且都是通過(guò)變量控制油缸來(lái)控制二次元件的斜盤(pán)傾角。因此,可以通過(guò)對(duì)不同參數(shù)的檢測(cè)和反饋來(lái)實(shí)現(xiàn)多種控制功能。</p><p> 1)二次調(diào)節(jié)靜液傳動(dòng)系統(tǒng)轉(zhuǎn)速控制</p><p> 圖2是液壓直接轉(zhuǎn)速控制系統(tǒng)。在系統(tǒng)中,二次元件3直接與恒壓網(wǎng)絡(luò)相連接,
26、測(cè)速泵4和二次元件3同軸相連,作為二次元件的測(cè)速裝置。測(cè)速泵4的輸出管路接到二次元件變量控制油缸2的右側(cè),同時(shí)并聯(lián)節(jié)流閥(節(jié)流閥5和固定節(jié)流口6)。</p><p> 當(dāng)調(diào)節(jié)節(jié)流閥5時(shí),變量控制缸2右側(cè)的壓力將發(fā)生變化,使二次元件3的斜盤(pán)傾角也隨之改變。在恒壓網(wǎng)絡(luò)中,二次元件3的輸出轉(zhuǎn)矩是隨二次元件的斜盤(pán)傾角變化。</p><p> 當(dāng)二次元件的斜盤(pán)傾角改變后,在外負(fù)載一定的情況下,二
27、次元件3加速或減速,二次元件轉(zhuǎn)速的變化將引起測(cè)速泵4流量的改變,這時(shí)節(jié)流閥中節(jié)流口處的壓力也隨之改變,壓力的變化使變量控制缸的活塞產(chǎn)生位移,推動(dòng)二次元件斜盤(pán)偏轉(zhuǎn)一定角度,于是二次元件3的輸出轉(zhuǎn)矩也隨之調(diào)整,當(dāng)輸出轉(zhuǎn)矩與外負(fù)載相平衡時(shí),二次元件便穩(wěn)定在某一轉(zhuǎn)速下作恒速轉(zhuǎn)動(dòng)。</p><p> 1一減壓閥;2一變量控制缸;3一二次元件;4一測(cè)速泵;5-節(jié)流</p><p> 閥;6一固定節(jié)
28、流口;7-油箱</p><p> 圖2二次調(diào)節(jié)轉(zhuǎn)速直接控制系統(tǒng)</p><p> 2)二次調(diào)節(jié)靜液傳動(dòng)系統(tǒng)位置控制</p><p> 在二次調(diào)節(jié)轉(zhuǎn)速控制系統(tǒng)中加入一條二次元件輸出軸的轉(zhuǎn)角反饋回路,即構(gòu)成如圖3(a)所示的電反饋二次元件位置控制系統(tǒng)。</p><p> 在這個(gè)控制系統(tǒng)中包含有變量控制缸的位移反饋,它作為控制系統(tǒng)的輔助控制
29、變量。</p><p> 3)二次調(diào)節(jié)靜液傳動(dòng)系統(tǒng)轉(zhuǎn)矩控制</p><p> 在恒壓網(wǎng)絡(luò)中,控制二次元件的斜盤(pán)傾角為一定值,則相應(yīng)的輸出轉(zhuǎn)矩也為一定值,這時(shí)可采用位移傳感器或轉(zhuǎn)矩傳感器。位移傳感器檢測(cè)變量缸的位移,如果使它為一定值,根據(jù)變量之間的相互關(guān)系,則可使輸出轉(zhuǎn)矩也為一定值。</p><p> 但是由于粘性摩擦轉(zhuǎn)矩的影響,它不能精確地控制負(fù)載轉(zhuǎn)矩。采用轉(zhuǎn)
30、矩傳感器則能實(shí)現(xiàn)較精確的轉(zhuǎn)矩控制。在轉(zhuǎn)矩調(diào)節(jié)系統(tǒng)中,也應(yīng)實(shí)行轉(zhuǎn)速檢測(cè)監(jiān)控,防止超速。</p><p> 對(duì)于像絞車(chē)、卷?yè)P(yáng)機(jī)之類(lèi)的傳統(tǒng)液壓傳動(dòng)裝置,需要有恒定的牽引力,如果采用二次調(diào)節(jié)靜液傳動(dòng)系統(tǒng),即為恒轉(zhuǎn)矩控制。</p><p> 1-二次元件; 2-位移傳感器;3一變量控制缸;4一電液伺服閥;5-節(jié)流閥;</p><p> 6一控制器;7.1一測(cè)速機(jī);7.2
31、一轉(zhuǎn)矩傳感器;7.3一負(fù)載</p><p> 圖3 二次調(diào)節(jié)靜液傳動(dòng)控制系統(tǒng)</p><p> 圖3(a)為轉(zhuǎn)矩控制系統(tǒng)。 圖3(b)為轉(zhuǎn)矩控制系統(tǒng)。</p><p> 4)二次調(diào)節(jié)靜液傳動(dòng)系統(tǒng)功率控制</p><p> 在二次調(diào)節(jié)靜液傳動(dòng)系統(tǒng)功率控制時(shí),可以有控制壓力P。、二次元件排量 :和二次元件轉(zhuǎn)速的乘積
32、為一定值以及控制轉(zhuǎn)矩 和轉(zhuǎn)速 的乘積為一定值的兩種實(shí)現(xiàn)功率控制途徑:即通過(guò)檢測(cè)二次元件的輸入流量并反饋到控制器,與實(shí)際給定值比較,用這個(gè)差值來(lái)控制二次元件的排量,使輸出功率與期望值相符,如圖4(a)所示?;蚴峭ㄟ^(guò)檢測(cè)二次元件的轉(zhuǎn)速與變量控制缸的位移(排量),然后,用兩者的乘積(流量)與實(shí)際給定值進(jìn)行比較,用來(lái)調(diào)節(jié)二次元件的排量,如圖4(b)所示。</p><p> a)流量檢測(cè)功率控制
33、 b)轉(zhuǎn)速檢測(cè)功率控制</p><p> 1-控制器;2-二次元件;3-位移傳感器;4-變量控制缸;5-電液伺服閥;</p><p> 6-油箱;7.1-流量計(jì); 7.2一轉(zhuǎn)矩傳感器</p><p> 圖4 二次調(diào)節(jié)靜液傳動(dòng)控制系統(tǒng)</p><p> 6 二次調(diào)節(jié)靜液傳動(dòng)系統(tǒng)的應(yīng)用</p><p> 由于二
34、次調(diào)節(jié)靜液傳動(dòng)系統(tǒng)具有許多優(yōu)點(diǎn),使它在很多領(lǐng)域得到廣泛地應(yīng)用。國(guó)外已將其成功應(yīng)用于造船工業(yè)、鋼鐵工業(yè)、大型試驗(yàn)臺(tái)、車(chē)輛傳動(dòng)等領(lǐng)域。第一套配備有二次調(diào)節(jié)閉環(huán)控制的產(chǎn)品,是無(wú)人駕駛集裝箱轉(zhuǎn)運(yùn)車(chē)CT40,它建在鹿特丹的歐洲聯(lián)運(yùn)碼頭(ECT)。</p><p> 德國(guó)的海上浮油及化學(xué)品清污船一科那西山特號(hào),其液壓傳動(dòng)設(shè)備配備有二次調(diào)節(jié)反饋控制系統(tǒng)。該系統(tǒng)可以使預(yù)選的撇沫泵和傳輸泵設(shè)備的轉(zhuǎn)速保持恒定,并使之不受由于傳輸介
35、質(zhì)粘度的變化而引起的外加轉(zhuǎn)矩的影響。德累斯頓工業(yè)大學(xué)通用試驗(yàn)臺(tái),利用二次調(diào)節(jié)反饋控制的特點(diǎn),可以進(jìn)行能量回收及具有高反饋控制精度。</p><p> 該試驗(yàn)臺(tái)能滿(mǎn)足實(shí)際中的嚴(yán)格要求,圖5 (a)為兩軸固定的傳動(dòng)元件性能測(cè)試試驗(yàn)臺(tái),圖5(b)為三軸固定的傳動(dòng)元件性能測(cè)試試驗(yàn)臺(tái),它們可以對(duì)多種不同形式的旋轉(zhuǎn)試件在接近試際運(yùn)行工況的條件下進(jìn)行試驗(yàn)。</p><p> 除對(duì)該試驗(yàn)臺(tái)有較高的動(dòng)態(tài)
36、性能要求外,還對(duì)它的節(jié)能效果寄予很大希望。奔馳汽車(chē)公司也將二次調(diào)節(jié)技術(shù)應(yīng)用于行駛模擬試驗(yàn)臺(tái)以及 在無(wú)人駕駛運(yùn)輸系統(tǒng)的行駛驅(qū)動(dòng)。</p><p> l一電動(dòng)機(jī);2-一次元件;3一液壓蓄能器;4一二次元件;5一測(cè)速裝置</p><p> 圖5(a) 二次調(diào)節(jié)靜液傳動(dòng)兩軸旋轉(zhuǎn)傳動(dòng)試驗(yàn)系統(tǒng) 圖5(b) 二次調(diào)節(jié)靜液傳動(dòng)三軸旋轉(zhuǎn)傳動(dòng)實(shí)驗(yàn)系統(tǒng)</p><p> 它還被用于
37、近海起重機(jī)的驅(qū)動(dòng)和油田用抽油機(jī)的液壓系統(tǒng)中。圖6是二次調(diào)節(jié)靜液傳動(dòng)系統(tǒng)應(yīng)用在液壓抽油機(jī)中的工作原理圖。在液壓缸下降的過(guò)程中,靠鉆桿和抽油泵的重力勢(shì)能來(lái)驅(qū)動(dòng)作為液壓馬達(dá)工況工作的二次元件2。電動(dòng)機(jī)1和二次元件2驅(qū)動(dòng)作為液壓泵工況工作的二次元件3。二次元件3再將壓力油壓入液壓蓄能器8中,以便在后續(xù)的液壓缸上升過(guò)程中使用。在液壓缸下降到終點(diǎn)時(shí),由行程開(kāi)關(guān)1O控制二次元件2的擺角過(guò)零點(diǎn),而轉(zhuǎn)成液壓泵工況工作。利用換向閥4將二次元件3擺過(guò)零點(diǎn)轉(zhuǎn)成
38、液壓馬達(dá)工況工作。采用了二次調(diào)節(jié)技術(shù)的液壓抽油機(jī)具有較高的充填率和較高的循環(huán)頻率,并延長(zhǎng)了鉆桿和抽油泵的壽命。</p><p> l一電動(dòng)機(jī);2,3-二次元件;4一電磁換向閥;5,6一溢流閥;</p><p> 7一單向閥;8-液壓蓄能器;9一液壓缸;10-行程開(kāi)關(guān)</p><p> 圖6 二次調(diào)節(jié)靜液傳動(dòng)系統(tǒng)應(yīng)用在液壓抽油機(jī)中的工作原理圖</p>
39、<p> 市區(qū)公共汽車(chē)配備了二次調(diào)節(jié)靜液傳動(dòng)系統(tǒng)后,節(jié)能效果相當(dāng)顯著。如圖7所示.改造后的公共汽車(chē)由一臺(tái)軸向柱塞單元A4VSO250DS21來(lái)驅(qū)動(dòng)。它圖5(b) 二次調(diào)節(jié)靜液傳動(dòng)三軸旋轉(zhuǎn)傳動(dòng)試驗(yàn)系統(tǒng)在滿(mǎn)載啟動(dòng)時(shí),能給出大約180 kW 的功率,由此可使汽車(chē)在20 s內(nèi)加速到它的最大速度50 km/h,而發(fā)動(dòng)機(jī)的功率卻只有30 kW。其150 kW 的差值,是從液壓蓄能器中獲得的。液壓蓄能器的充壓是在制動(dòng)過(guò)程中進(jìn)行的。在這
40、個(gè)過(guò)程中,二次元件作為液壓泵來(lái)工作,而液壓蓄能器為下次的加速過(guò)程充壓。系統(tǒng)的流量損失,由液壓泵來(lái)補(bǔ)償。</p><p> 綜上所述,二次調(diào)節(jié)靜液傳動(dòng)系統(tǒng)可實(shí)現(xiàn)能量的回收和重新利用,其主要應(yīng)用在以下幾個(gè)方面:</p><p> 1)位能回收 如液壓驅(qū)動(dòng)的卷?yè)P(yáng)起重機(jī)械。由于卷?yè)P(yáng)機(jī)械中有位能變化,采用二次調(diào)節(jié)靜液傳動(dòng)技術(shù)可以回收其位能。它可用于起重機(jī)械和礦井提升機(jī)械,纜索機(jī)械的索道傳動(dòng),船用
41、甲板機(jī)械等 (如圖6所示);</p><p> 2)慣性能回收 如液壓驅(qū)動(dòng)擺動(dòng)機(jī)械和試驗(yàn)裝置。應(yīng)用二次調(diào)節(jié)靜液傳動(dòng)技術(shù)可對(duì)擺動(dòng)機(jī)械在頻繁的啟動(dòng)、制動(dòng)過(guò)程中產(chǎn)生的慣性能,進(jìn)行回收和再利用(如圖7所示);</p><p> 圖7 液壓驅(qū)動(dòng)擺動(dòng)機(jī)械和試驗(yàn)裝置</p><p> 3)群控節(jié)能 如群控作業(yè)機(jī)械。對(duì)多臺(tái)周期性工作設(shè)備共用一個(gè)動(dòng)力源,這樣既節(jié)省費(fèi)用又節(jié)約了能
42、源(如圖8所示)。</p><p> 1-二次元件;2-液壓蓄能器;3-壓力表4-液壓缸5-電液伺服閥6-提升機(jī)構(gòu)</p><p> 圖8 多用戶(hù)并行二次調(diào)節(jié)靜液傳動(dòng)系統(tǒng)</p><p><b> 附錄B 外文文獻(xiàn)</b></p><p><b> 附錄B1</b></p>&
43、lt;p> Proceedings of ISFP’2007:</p><p> 5th International Symposium on</p><p> Fluid Power Transmission and Control</p><p> June 6-8, 2007, Beidaihe, China</p><p&g
44、t; Analysis on Coupling Influence</p><p> of the Servo Loading System with Secondary Regulation</p><p> Wang Hui* Liu Yufeng Zhong Haibo Yang Tingting</p><p> College of Mecha
45、nical Engineering, Liaoning Technical University, Fuxin, Liaoning, 123000, China</p><p> Abstract:The mathematical model was presented for the servo loading system with secondary regulation. Control perform
46、ance under the disturbance of hydraulic and mechanical coupling was simulated with MATLAB. Simulation reveals that increasing of load pressure, output torque and rotational speed may deteriorate control precision. Load p
47、ressure fluctuation causes more influence on torque control system than on speed control system, while torque fluctuation causes more influence on speed control sy</p><p> Key words: secondary regulation;
48、hydraulic coupling; mechanical coupling.</p><p> 1. Introduction</p><p> The servo loading system with secondary regulation is a newly developed loading technology which applies to simulation
49、loading experiment of engines, gear-boxes, transmission-bridge of vehicle and many rotary elements in recent years. It is a advanced system with high efficiency and proper dynamic performance which can also realize energ
50、y recycling as well as flexible and reliable controlling [1], [2]. However, here comes in the questions of hydraulic coupling and mechanical coupling disturbance</p><p> 2. Principle of the Loading System w
51、ith Secondary Regulation</p><p> The principle of servo loading system with secondary regulation is shown in Fig.1. The constant pressure network is composed of electromotor 1, constant pressure and variabl
52、e capacity pump 2, accumulator 3, relief valve 4 and corresponding pipelines all of which provide steady and constant pressure power supply for the entire loading system. Secondary element 9 and secondary element 15 are
53、connected on the constant pressure network in parallel by the way of pressure coupling. Secondary element 9</p><p> rotational speed for loading system in which the condition of motor and also acts as a par
54、t of the rotational speed controlling system with electro-hydraulic servo valve 8, variable hydro cylinder 7, displacement transducer 6, revolution speed transducer 10 and controller 11. Secondary element 15 achieves loa
55、ding to loadable object in which the condition of pump and it composes of the control system of torque with electro-hydraulic servo valve 17, variable hydro cylinder 16, displacement transdu</p><p> 1─elect
56、romotor ; 2─constant pressure an variable capacity pump; 3─accumulator; 4─over flow valve; 5─oil box; 6,18─displacementtransducer; 7,16─variable hydro cylinder; 8,17─electro-hydraulic servovalve; 9, 15─secondary unit;
57、10─revolution speed transducer; 11,14─PID controller; 12─loadable object element; 13─revolution torque transducer</p><p> Fig.1 Principle diagram of the servo loading system with secondary regulation</
58、p><p> 3. Mathematical Model of Loading System </p><p> The mathematical model was presented for the servo loading system with secondary regulation as shown in Fig.1 and represent block diagram b
59、y simplifying and sorting out in Fig. 2. </p><p> Fig.2 Block diagram of the servo loading system</p><p> with secondary regulation</p><p> We can see that the system is a system
60、 with two-input and two-output as shown in Figure 2.The system of rotational speed control of secondary element 9 correspond to the part of NiNo. while the system of rotational torque control of secondary element 15 corr
61、espond to the part of MiMo.</p><p> Tache Gn1(S) and Gm1(S) are integrative transfer function of electro-hydraulic servo valve 8(17), variable hydro cylinder 7(16), displacement transducer 6(18) of the rota
62、tional speed controlling system and rotational torque controlling system shown in figure 2.</p><p> Tache Gn1(S) and Gm1(S) are the same if the elements of the two systems (except revolution speed transduce
63、r10 and revolution torque transducer13) are the same. The specific form as followed [3], [4]:</p><p><b> = </b></p><p><b> (1)</b></p><p> In the formula,
64、 Ksv、ωsv and ζsv denotes the flowed gain of electro-hydraulic servo valve, natural frequency and damping ratio; A and Ymax shows efficacious square maximal displacement of piston of variable hydro cylinder; Vmax denotes
65、 maximal displacement of secondary element; PL is the load in constant pressure network; Ky stand for transformation coefficient of displacement transducer. Gn2(S) is inertia damping tache of loading object 12(including
66、secondary element 9, revolution speed transdu</p><p> == (2)</p><p> In the formula, Jn and Rn are equivalent moment of inertia and equivalent damping coefficient of loading obje
67、ct12. Gm2(S) is inertia damping tache of secondary element 15 whose transfer function is:</p><p> = = (3)</p><p> In the formula, Jm and Rm stand for rotational inertia and dampi
68、ng coefficient of secondary element 15. Ni and No stand for input and output rotational speed in rotational speed controlling system respectively while Mi and Mo stand for input and output torque in torque controlling s
69、ystem. Kfn and Kfm are transformation coefficient of revolution speed transducer 10 and revolution torque transducer 13.</p><p> 4. Influence of the Control Performance with the Coupling Disturbance System&
70、lt;/p><p> As shown in Figure 1,the two secondary elements are connected in parallel to constant network at one end by the way of pressure and mechanical coupling with loading object, revolution speed transduc
71、er and revolution torque transducer at the other end. We make simulation of system modeling as shown in Figure 2 under the condition that the loading pressure is sine wave, output speed No and output torque Mo are square
72、 wave for analyze the influence on control performance on system caused by couplin</p><p> 1─output speed 2─output torque</p><p> Fig.3 Simulation curves under the disturbances of the&
73、lt;/p><p> load pressure fluctuation</p><p> In the Fig .3 a, b, c, d, the output-rotation speed step response of rotational speed controlling system with the wave disturbance in different loadin
74、g pressure is shown in Curve 1. Amplitude fluctuation of pressure respectively account for 0.0 percent,5.0 percent,10.0 percent and 20.0 percent of the rating value of pressure; Curve 2 show output-torque step response o
75、f control system of torque with the wave disturbance in the different pressures upwards. The wave errors of output speed are 0.1 p</p><p> In the figure 4 a, b, c, d, curve 1 show square wave response of ou
76、tput rotational speed of the control system of rotational speed. The amplitude of fluctuation account for 0.0 percent, 10.0 percent, 20.0 percent and 40.0 percent of the fixed value (500rpm) and acts as wave disturbance
77、 of torque the controlling system. Curve 2 shows step response of output torque with wave disturbance of rotational speed of the control system of torque. Wave errors of output torque with different wave disturban</p&
78、gt;<p> 1─output speed 2─output torque</p><p> Fig.4 Simulation curves under the disturbances of the output rotational speed fluctuation</p><p> In the figure 5, curve 2 shows
79、square wave response of output torque of the control system of torque which serves as wave disturbance of the controlling system of rational speed. Its amplitude of fluctuation is accounts for 0.0 percent, 10.0 percent,
80、30.0 percent and 50.0 percent of the fixed value (300N.m).Curve 1 shows step response of output rotational speed with wave disturbance of torque of the control system of rotational speed. Wave errors of output rotational
81、 speed with different wave di</p><p> 1─output speed 2─-output torque</p><p> Fig.5 Simulation curves under the disturbances of the output torque fluctuation</p><p> Curve
82、 1 is step response of output rotational speed of the rotational speed control system under various torque fluctuation interference upward, From curve 1, fluctuation error of output rotational speed under various torque
83、fluctuation interference upward are respective 0.0%, 4.0%, 8.0%, 13.6%. It is obvious that control performance of the rotational speed control system is affected by output torque fluctuation interference that also means
84、mechanism coupling of the torque control system </p><p> Comparing Fig.4 with Fig.5,we will also find that the effect torque fluctuation on the rotational speed control system is more than the effect rotati
85、onal speed fluctuation on the torque control system.</p><p> 5. Conclusions</p><p> There are two couplings in servo loading system of secondary regulation. One is hydraulic coupling and the o
86、ther is mechanical coupling. The two couplings will have influenced on the control performance of system. </p><p> The influence of hydraulic coupling disturbance lies on pressure fluctuation of loading and
87、 the influence of mechanical coupling lies on output torque fluctuation and</p><p> output revolution fluctuation. Control precision of system decreases with the increase pressure of loading, output speed a
88、nd amplitude of fluctuation of output rotational speed. </p><p> Also, the influence from loading pressure fluctuation on torque controlling system is larger than it is on rotational speed controlling syste
89、m while influence from torque fluctuation on rotational speed controlling system is greater than it is on torque controlling system.</p><p> References</p><p> [1]Tian Lianfang. Study of loadi
90、ng technique and control method of torque servo system with secondary regulation, [Ph. Degree thesis] Harbin, Harbin Institute of Technology, 1997:12?28 (in Chinese) </p><p> [2]Kim C S, Lee C O. Load insen
91、sitive hydrostatic drive with control of the secondary unit, In: 4th International Conference on Fluid Power, Transmission and Control, China Hang Zhou, 2000: 124?128.</p><p> [3]Wang Zhan Lin. Recent hydra
92、ulics control, Beijin, Mechanical industry publishing house, 1999:125?138 (in Chinese)</p><p><b> 附錄B2</b></p><p> Research on Generalized Secondary regulation hydrostatic transmis
93、sion </p><p> Properties Li Wanguo Wang Zhanlin Beihang University,Beijng,100083</p><p> Abstract:The fundamental properties of hydraulic— secondary— control— system was analyhanic- electric-
94、hydraulic- system ,then the concept of generalized secondary control was presented.By an example of a reversibly running mechanic-electric- hydraulic- system.the generalized secondary control system was analyzed,whose ge
95、neral properties were summa rized. Secondary regulation hydrostatic transmission zed,and according to the similarity of mechanics to electgy conversion for the regulation of h</p><p> If the hydraulic sys
96、tem of mechanical energy into hydraulic components (pump), referred to as a primary component or components, swooped hydraulic and mechanical energy can be interchangeable components (hydraulic motor / pump), referred to
97、 as the secondary component or sub-components Of hydraulic energy transmission process of recovery and reuse, and from the perspective of macro-hydrostatic transmission for a reasonable configuration and improve its cont
98、rol characteristics. Based on the energy</p><p> At the same time, the network can also be connected to a number of unrelated load, load the driver on the secondary component of the direct control of its co
99、rner speed, torque and power, or through the transformer to control the hydraulic displacement and speed.</p><p> Secondary regulation of the hydrostatic transmission system control and functional haracteri
100、stic. To solve hydraulic drive technology currently, some unresolved issues and alternative transmission of the drive technology to provide favorable for the condition. </p><p> Two secondary regulation hyd
101、rostatic drive system components </p><p> Secondary regulation hydrostatic transmission technology is the constant pressure of the secondary network components (pump/motor) regulation, by adapting to their
102、displacement load changes. Secondary regulation hydrostatic drive system components as shown in Figure 1, mainly from secondary component 2, 8-cylinder control variables, electrohydraulic servo (ratio) valve 7 (also can
103、be controlled in other ways) and so on. </p><p> Constant voltage source of oil in part by closing valve 4 in one way , the constant voltage variable pump and hydraulic accumulator five components. As part
104、of constant pressure oil source dynamic characteristics better, in the secondary regulation hydrostatic transmission system for analysis and research, can not be considered part of the oil source dynamic performance of t
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二次調(diào)節(jié)加載系統(tǒng)耦合特性及解耦控制研究.pdf
- 二次調(diào)節(jié)扭矩伺服加載試驗(yàn)臺(tái)設(shè)計(jì)開(kāi)題報(bào)告.doc
- 二次調(diào)節(jié)扭矩伺服加載試驗(yàn)臺(tái)設(shè)計(jì)開(kāi)題報(bào)告.doc
- 二次調(diào)節(jié)扭矩伺服加載實(shí)驗(yàn)臺(tái)設(shè)計(jì)【3張圖紙】【優(yōu)秀】
- 二次調(diào)節(jié)扭矩伺服加載實(shí)驗(yàn)臺(tái)設(shè)計(jì)【3張圖紙】【優(yōu)秀】
- 二次調(diào)節(jié)扭矩伺服加載試驗(yàn)臺(tái)設(shè)計(jì)說(shuō)明書(shū).doc
- 二次調(diào)節(jié)扭矩伺服加載試驗(yàn)臺(tái)設(shè)計(jì)說(shuō)明書(shū).doc
- 二次調(diào)節(jié)扭矩伺服加載試驗(yàn)臺(tái)設(shè)計(jì)說(shuō)明書(shū)[帶圖紙]
- 高效節(jié)能液壓旋轉(zhuǎn)二次調(diào)節(jié)加載試驗(yàn)系統(tǒng)研究.pdf
- 機(jī)械畢業(yè)設(shè)計(jì)(論文)-二次調(diào)節(jié)扭矩伺服加載試驗(yàn)臺(tái)設(shè)計(jì)【全套圖紙】
- 重卡雙驅(qū)傳動(dòng)橋二次調(diào)節(jié)加載系統(tǒng)研究.pdf
- 工程機(jī)械跑合試驗(yàn)臺(tái)二次調(diào)節(jié)加載系統(tǒng)的研究.pdf
- 基于二次調(diào)節(jié)的采煤機(jī)截割部模擬加載系統(tǒng)研究.pdf
- 二次調(diào)節(jié)轉(zhuǎn)速控制系統(tǒng)影響因素的研究.pdf
- 基于二次調(diào)節(jié)的減速器加載系統(tǒng)分析與魯棒控制研究.pdf
- 基于二次調(diào)節(jié)的減速器加載系統(tǒng)分析與模糊控制研究.pdf
- 基于二次調(diào)節(jié)的減速器加載試驗(yàn)臺(tái)設(shè)計(jì)論文.doc
- 基于二次調(diào)節(jié)的減速器加載試驗(yàn)臺(tái)設(shè)計(jì)論文.doc
- 基于二次調(diào)節(jié)的減速器加載試驗(yàn)臺(tái)設(shè)計(jì)論文[帶圖紙]
- 基于二次調(diào)節(jié)的減速器加載試驗(yàn)臺(tái)設(shè)計(jì)開(kāi)題報(bào)告.doc
評(píng)論
0/150
提交評(píng)論