版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、<p><b> 英文原文</b></p><p> Study on Critical, Modern Technology for</p><p> Mining in Gassy Deep Mines</p><p> YUAN Liang</p><p> Huainan Mining (Gr
2、oup) Co. Ltd., Huainan, Anhui 232001, China</p><p> Abstract: To achieve safe and highly efficient mining in the gassy, deep mines of the Huainan collieries simultaneous coal and gas extraction, and the cor
3、responding ventilation methods were developed. This includes a set of mining procedures and principles which help insure safe and efficient production. Furthermore, green mining, meaning the comprehensive use of emitted
4、gas, proper treatment of the environment and appropriate mine temperature control, is now standard. The concepts of modern min</p><p> Key words: gassy deep mining; modern mining; coal and gas simultaneous
5、extraction; green mining</p><p> CLC number: TD 82</p><p> 1 Introduction</p><p> Typical in terms of gassy mines in China, the Huainan mine areas have coal reserves of 50 billio
6、n tons and gas reserves of 5.928 billion m3. The coal seam is characterized as rich in gas content (12–26 m3/t), deeply buried (300–1500 m), extremely soft in texture (f = 0.2–0.8), low in permeability (λ =0.0011 m2/(MPa
7、2·d)) and high in gas pressure (Pmax=6 MPa). Ten production mines, with a gas emission rate of 820 m3/min, are all considered gassy mines. The area is geologically complicated. Where m</p><p> Before 1
8、997 gas was not satisfactorily extracted. The annual extraction rate was 5.2 million m3 and this average extraction rate was merely 3% of the gas production. Therefore, gas accidents frequently occurred in the area and m
9、ine productivity remained at</p><p> a low level. During the decade from 1987 to 1997 five extremely serious gas accidents occurred which caused a total of 293 deaths. In November of 1997 two extremely seri
10、ous gas accidents occurred which caused 133 deaths. As a consequence of this, the area became notorious for frequent gas accidents and the annual coal output during that period remained as low as 8–10 million tons.</p
11、><p> With the gradual development of gassy deep mine working technology the area has witnessed much safer production, a record which gets better with each passing day.</p><p> 2 Simultaneous Coa
12、l-Gas Extraction Technologies</p><p> Gas troubles are mainly caused by working activities. Hence, a combination of technologies, including things like working methods, working sequences, the principles of
13、stratum movement caused by working, the principles of gas pressure relief or methods for gas extraction, should be considered simultaneously when designing coal-gas extraction methods.</p><p> 2.1 Decision
14、of pressure-relief seam</p><p> In the Huainan area there are 9–18 workable seams. They are numbered in reverse order to their levels as groups A, B, C, D and E and have a total workable thickness of 22–34
15、m. The features of the coal seams are shown in Table 1. With such a layout scientific selection of the initial working seam will be a critical decision to make.</p><p> 2.1.1 Intrinsic safety principle</
16、p><p> When beginning to mine a coal seam group, for the sake of intrinsic safe mining, a seam comparatively low in gas content and burst risk should be selected as the pressure-relief seam for the following s
17、eams. For this purpose, in the Huainan area, seam 11-2 is selected as the pressure-relief seam for seam 13-1 below it; seam B8 is selected for seam B6 above it; seam B10 is selected for seam B11 below it; and seam 15 is
18、selected for seam 13 above it. These selections, and the corresponding working</p><p> The key technique of the pressure-relief seam lies in the roof bore-hole, or roadway drainage technology. The key to su
19、ccessful implementation of roof borehole, or roadway drainage, technology lies in the proper location of the gas concentration. Theoretical studies, numerical simulations and in-situ surveys and measurements all show tha
20、t under the present seam and roof conditions in the Huainan area concentration of gas are located in circular cranny rings vertically</p><p> 8–25 m above the roof and 0–30 m below the air return way [4–6].
21、 Therefore, roof boreholes and roadway drainage devices should be arranged at the locations where gas concentrates. Also, gas extraction power and piping should satisfy the gas extraction demands. With the above demands
22、satisfied one roof can extract gas at 30 m3/min and 70% of the gas can be extracted from the working face. For roof boreholes the optimal parameters for the negative pressure at the mouth of the hole, number of holes<
23、/p><p> 2.1.2 Principle of pressure relieving in cycle</p><p> Mining affected pressure-relief is an essential tool which improves the permeability of a seam. In the Huainan areas seam 13-1(C13)
24、is a thick seam high in gas content. To improve the permeability of this seam, seam 11–2, 70 m below, was selected as the pressure-relief seam. Starting from the broken block of seam 11-2 and seam B8, 150 m below, was se
25、lected. In this way, the desired goals were successfully achieved. Based on this experience, a technique for simultaneous extraction of coal and gas</p><p> Seam distance (the ratio of inter-seam distance t
26、o working height) was 35 times, by mining seam 11-2 to relieve pressure upwards the permeability for seam 13-1 was increased by 2880 times [3].</p><p> Relieving pressure downwards can be done only over a r
27、ather smaller distance. In this case, when the relative inter-seam distance is comparatively long multiple seams should be connected to the corresponding seam for sufficient pressure-relief. In the Huainan areas, seam 4
28、in group B contains the largest volume of gas. By working coal seams B9, B8, B7 and B6 above B4 to relieve downward pressure the B4 gas pressure was reduced from 4.0 MPa to 0.2 MPa. Additionally, the permeability increas
29、ed hun</p><p> of 20–120 m is capable of safely controlling the coal gas.</p><p> 2.1.3 Principle for maximal resources recovery</p><p> When a thin seam is selected as the press
30、ure-relief seam coal resource recovery can be increased. In the Huainan areas all the thin seams were located through geological surveys. Those seams whose thickness reaches 0.7 m were chosen as pressure-relief seams. Th
31、erefore, the coal recovery rate has reached 82%.</p><p> 2.2 Combination of surface and underground gas extraction</p><p> Boreholes and roadways should be arranged in relation to different un
32、derground gas resources; holes are drilled along the seam, through the seam and in the goaf. Drainage roadways can be divided into high-located roadway, low-located roadways and tailgates. When pressure is relieved, and
33、permeability improved, by drilling holes through the seam the gas extraction rate can be as high as 60% within 120 d. Through studies, it was discovered that a period of active gas flow occurs as shown in Fig. 1</p>
34、;<p> A small shaft can be sunk from the surface in the mining and pressure-relief affected area to extract gas from the mining area. The structure of the shaft sunk from the surface is shown in Fig. 2. The shaft
35、 can be as deep as 650–680.3 m with a diameter of 177.8 mm. The thickness of the target seam is 7.9–10.5 m.</p><p> Observations on-site have shown that the maximum gas extraction volume of a single shaft h
36、as reached 22190 m3/d with an average gas extraction volume of 14943 m3/d [2]. The concentration for the gas so extracted has reached 95% and the annual gas extraction volume of a single shaft has reached 3 million m3. I
37、n the mining affected zone, the drainage radius of a single shaft is 211 m. The shaft can be used to extract gas from mining affected zones or from goafs.</p><p> 2.3 Intrinsically safe ventilation techniqu
38、e</p><p> At the gassy working face Y-ventilation technology, consisting of two inlets and an outlet and the corresponding gob-side entry retaining technology, were applied. Such technologies can be an appr
39、opriate solution at the working face and for upper-corner gas problems, and to remove heat diffused by the goaf. This technique of working without a pillar can reduce the coal losses to the minimum and expand the scope o
40、f the mining pressure-relief area.</p><p> The key technique for gob-side entry retaining depends on the intensity, and how far the required transportation, of the filling material. A new material consistin
41、g of a concrete cream material is used for the filling. Fly-ash composes about the 30% of the dry weight of this filler. On-site observations indicate that one day after filling the compressive strength will be 3 MPa and
42、 after 28 days the strength will be 14 MPa. This new material is weatherproof so the worked</p><p> roadway remains safe and stable. In the Huainan areas a concrete pump is used for material transport over
43、a distance greater than 400 m; the maximum distance can be 1200 m.</p><p> 3 Conclusions</p><p> Modern extraction principles for gassy mines are intrinsic safety, efficient integration and gr
44、een mining. Since 1998 operators at the Huainan mines have been promoting this technology and have obtained apparent economic profits and social benefits.</p><p> Consider these contrasts. During the period
45、 from 1997 to 2005 there were ten mines in the area. Also during this period the gas extraction volume increased from 10 million m3 to 150 million m3, the annual coal production increased from 10 million tons to 30 milli
46、on tons, the annual production of a working face increased from 0.6 million tons to 3.63 million tons and the gas extraction rate increased from 5% to 70%. Meanwhile, extremely serious gas explosions were much better con
47、trolled, as indic</p><p> As mining goes deeper and deeper problems with gas, pressure, temperature and so on become increasingly serious. In particular coal and gas out-burst prevention techniques will bec
48、ome the most important problem for gassy mines. Therefore, systematic research should continue to be conducted on modern mining technology for the sake of safe, efficient and green mining.</p><p><b>
49、中文譯文</b></p><p> 研究現(xiàn)代高瓦斯礦井深部開采的關(guān)鍵技術(shù)</p><p><b> 袁亮</b></p><p> 淮南礦業(yè)(集團(tuán))有限公司,安徽淮南232001,中國</p><p> 摘要:為了實(shí)現(xiàn)安全,高效的開采高瓦斯煤礦,淮南礦業(yè)集團(tuán)進(jìn)行深部煤和天然氣共采的同時(shí),發(fā)展相應(yīng)的通風(fēng)
50、方法。這包括建立采礦作業(yè)的程序和原則,以確保安全和高效的生產(chǎn)。此外,綠色開采是現(xiàn)在的標(biāo)準(zhǔn),也就是綜合進(jìn)行礦井瓦斯排放,妥善處理環(huán)境和適當(dāng)?shù)目刂频V井溫度。該理論闡述的是現(xiàn)代化采礦和壓力卸載的原則。開發(fā)了煤與瓦斯共采技術(shù),它提取的是地表和地下的混合氣體。該系統(tǒng)應(yīng)用Y型通風(fēng)巷道,沿空留巷技術(shù),壓力控制技術(shù)控制堅(jiān)硬頂板和周期來壓原理,且自動(dòng)化和安全可靠的現(xiàn)代化采礦設(shè)備能有助于深礦井的安全運(yùn)行。研究這些技術(shù)的操作參數(shù),并對其使用結(jié)果進(jìn)行討論。&l
51、t;/p><p> 關(guān)鍵詞:深部瓦斯開采;現(xiàn)代采礦;煤與瓦斯共采;綠色開采</p><p><b> 1 介紹</b></p><p> 就中國典型的高瓦斯礦井而言,在淮南礦區(qū)的煤炭儲量有500億噸,天然氣59.28億m3。這個(gè)地區(qū)煤層的特點(diǎn)是,瓦斯含量高(12-26m3/t),埋藏較深(300-1500m),質(zhì)地非常軟(f = 0.2–0.
52、8),滲透性低(λ =0.0011m2/(MPa2·d)),壓力較高((Pmax=6 MPa)。10個(gè)生產(chǎn)礦井的瓦斯排放率達(dá)到820m3/min,被認(rèn)為是高瓦斯礦井。該地區(qū)地質(zhì)條件復(fù)雜。當(dāng)開采多瓦斯的煤層群時(shí),在深處得爆破工作就很危險(xiǎn)。高應(yīng)力的軟巖環(huán)繞著煤層:水平應(yīng)力通常是垂直應(yīng)力的1.1?1.5倍。此外,超過80%的頂板被評為IV或者V級以上的易碎的性。這些是目前的地質(zhì)條件目前所呈現(xiàn)的問題,且一般伴隨有地?zé)岬膯栴}。</
53、p><p> 在1997年之前瓦斯氣體是不能令人滿意地提取的。每年提取率為5.2億立方米,這個(gè)平均提取率只是天然氣生產(chǎn)率的3%。因此,瓦斯事故頻繁發(fā)生的地區(qū),礦山生產(chǎn)力水平較低。從1987到1997發(fā)生了五次極端嚴(yán)重的瓦斯氣體爆炸事故,總共導(dǎo)致293人死亡。在1997年11月兩個(gè)極為嚴(yán)重的意外瓦斯事故造成133人死亡。由于這一原因,該地區(qū)成為瓦斯事故頻繁地區(qū),而在此期間每年的煤炭產(chǎn)量依然較低,為8-10萬噸。<
54、;/p><p> 隨著逐漸在高瓦斯深礦井中應(yīng)用技術(shù),該地區(qū)的生產(chǎn)逐漸安全起來,以后這個(gè)紀(jì)錄將會越來越好。</p><p> 2 煤與瓦斯共采技術(shù)</p><p> 天然氣的問題主要是由于開采活動(dòng)引起的。因此,一組技術(shù)組合,包括許多東西,像工作方法,工作序列,由工作引起的地層活動(dòng)的規(guī)律,瓦斯降壓的原則或瓦斯開采的方法,在設(shè)計(jì)煤與瓦斯共采方法時(shí)都應(yīng)同時(shí)考慮。</
55、p><p> 2.1煤層減壓的措施</p><p> 在淮南地區(qū)有9-18可采煤層。他們以相反的順序被編號,為A,B,C,D,E,可采的煤層總厚度度為22-34m。煤層的特點(diǎn)見表1。有了這樣的一個(gè)布局,科學(xué)的選擇初始開采煤層將是一個(gè)重要的決定。</p><p> 2.1.1內(nèi)在安全原則</p><p> 當(dāng)開采一組煤層群時(shí),為了真正意義上
56、的安全采礦,應(yīng)選擇瓦斯含量和突發(fā)風(fēng)險(xiǎn)比較低的煤層,作為下降煤層的卸壓煤層。為此,在淮南地區(qū),11-2煤層被選定為卸壓煤層,因?yàn)?3-1在它下方;B8 被選擇由于 B6 在上方;B10 被選擇由于 B11在下方;15被選擇因?yàn)?13在上方。這些選擇和相應(yīng)的工作機(jī)制是成功的。</p><p> 煤層卸壓的關(guān)鍵技術(shù)在于頂板鉆孔中和巷道排水技術(shù)。對頂板鉆孔和巷道排水成功實(shí)施的關(guān)鍵技術(shù)在于瓦斯?jié)舛鹊倪m當(dāng)位置。理論研究,數(shù)
57、值模擬和現(xiàn)場調(diào)查和測量表明,在淮南地區(qū)目前的煤層和頂板條件下,瓦斯氣體位于循環(huán)裂隙圈中垂直頂板8–25 m,0–30 m。因此,頂板鉆孔和巷道排水設(shè)備應(yīng)布置在瓦斯氣體較濃的地點(diǎn)。此外,電力和天然氣開采的天然氣管道應(yīng)滿足提取要求。滿足上述條件的一個(gè)頂板瓦斯提取能達(dá)30 m3/min,70%的瓦斯能從工作面提取出來。頂板鉆孔的最優(yōu)負(fù)壓參數(shù)在洞口,鉆孔數(shù)量和瓦斯提取率如下:在一個(gè)取樣范圍內(nèi)應(yīng)打8個(gè)鉆孔,在這兩個(gè)取樣之間的間隔應(yīng)該是100米,洞
58、長應(yīng)該是123m,負(fù)提取壓力應(yīng)為16–20 kPa。</p><p> 2.1.2周期緩解壓力的原則</p><p> 采掘影響減壓閥是提高煤層透氣性的重要工具之一。在淮南地區(qū)煤層13-1(C13)是一個(gè)厚煤層且瓦斯含量高的煤層。為了提高本煤層透氣性,煤層11-2,70m以下,被選定為降壓煤層。從破碎帶和煤層B8,150m以下被選擇。在這種方式下,成功地實(shí)現(xiàn)了預(yù)期目標(biāo)。根據(jù)這一經(jīng)驗(yàn),煤
59、與瓦斯共采的技術(shù),通過建立位于70–150 m遠(yuǎn)的一個(gè)工作減壓層。當(dāng)斷裂層距離為70m,相對跨縫距離(該距離比間縫工作高度)為35倍,由于開采11-2煤層,以減輕壓力,造成13-1煤層滲透性增加了2880倍。</p><p> 卸壓可以在一個(gè)相當(dāng)小的距離內(nèi)完成。在這種情況下,當(dāng)跨縫的相對距離較長時(shí),為了充足的卸壓多煤層應(yīng)連接到相應(yīng)的煤層。在淮南地區(qū),B組中的4煤是瓦斯含量最高的。通過對工作煤層B9, B8, B
60、7和B6上面的B4卸壓調(diào)節(jié),B4瓦斯氣體的壓力從4.0MPa下降到0.2MPa。此外,通透性數(shù)百倍的增加。這樣,一個(gè)涉及煤與瓦斯共采且多層開采煤層倍短距離20-120m分隔的循環(huán)技術(shù)能夠安全地控制瓦斯。</p><p> 2.1.3資源最大回收的原則</p><p> 當(dāng)一個(gè)薄煤層被選定為卸壓煤層,煤炭資源的回收率能提高。在淮南地區(qū)所有的薄煤層是通過地質(zhì)調(diào)查找到的。這些煤層中,當(dāng)厚度達(dá)
61、到0.7m時(shí)就選為壓煤層。</p><p> 2.2地面和地下聯(lián)合開采天然氣</p><p> 應(yīng)根據(jù)不同的地下天然氣資源來安排鉆孔和巷道。鉆孔通過煤層采空區(qū)沿煤層鉆孔。排水巷道可分為高于巷道、低于巷道和尾部擋板。當(dāng)壓力降低,滲透率提高時(shí),在120天內(nèi)通過鉆孔煤層瓦斯抽采率可高達(dá)60%。通過研究,人們發(fā)現(xiàn),一段時(shí)間的活動(dòng)氣流出現(xiàn)圖 1 所示圖1是介紹煤層瓦斯壓力流量變化的。一旦開始泄壓
62、前20天構(gòu)成壓力釋放,那么會增加壓力的活動(dòng),而這期間天然氣開采量增加。從20天到80天的時(shí)間構(gòu)成壓力釋放穩(wěn)定期和作為滲透系數(shù)指標(biāo)的應(yīng)力活動(dòng)達(dá)到峰值且氣體提取率穩(wěn)定。在此期間,四個(gè)孔中天然氣平均開采量超過1.0 m3/min。從第80天開始,隨著煤層變堅(jiān)固,滲透性系數(shù)降低,天然氣開采率的下降夜符合負(fù)指數(shù)?;谶@個(gè)原因,在壓力釋放和瓦斯氣體活躍期間應(yīng)盡可能多的提取瓦斯以提高氣體提取率。</p><p> 一個(gè)小的立
63、井可以在沉降地表和卸壓影響的地區(qū)中,從采空區(qū)提取瓦斯氣體。立井地面沉降結(jié)構(gòu)如圖2所示。立井可深達(dá)650–680.3m,直徑177.8 mm。目標(biāo)煤層厚度為 7.9–10.5 m。</p><p> 現(xiàn)場觀測顯示,單井最大天然氣開采量達(dá)到22190 m3/d而平均天然氣開采量是14943 m3/d。瓦斯氣體提取濃度已達(dá)95%而單井的年瓦斯提取量已達(dá)到3百萬m3。在開采影響區(qū),一個(gè)立井的排水半徑為 211 m。立井
64、可以從挖掘受影響的區(qū)域或采空區(qū)提取瓦斯氣體。</p><p> 2.3內(nèi)在通風(fēng)安全技術(shù)</p><p> 在高瓦斯的工作面,應(yīng)用由兩個(gè)入口和一個(gè)出口組成的Y型通風(fēng)技術(shù)和相應(yīng)的沿空巷道支護(hù)技術(shù)。這種技術(shù)可以是一個(gè)解決工作面上隅角瓦斯和消除采空區(qū)所產(chǎn)生的熱擴(kuò)散的適當(dāng)?shù)姆椒?。這方面的技術(shù)工作不用煤柱可以將損失降到最低程度,而且擴(kuò)大采礦卸壓區(qū)的范圍。</p><p>
65、 沿空巷道支護(hù)技術(shù)關(guān)鍵依賴強(qiáng)度,運(yùn)距和所需充填材料。一種新型材料組成的混凝土霜材料被用于充填。干充填材料的30%的成分是粉煤灰?,F(xiàn)場觀察表明,一天后充填物的抗壓強(qiáng)度是3MPa,28天后抗壓強(qiáng)度將達(dá)到14MPa。這種新材料是防水的,以便保證巷道的安全和穩(wěn)定。在淮南地區(qū)混凝土輸送泵用于物質(zhì)輸送的距離大于400米,最長可達(dá)1200m。</p><p><b> 3結(jié)論</b></p>
66、<p> 現(xiàn)代化的高瓦斯礦井的開采原則是安全,高效一體化和綠色開采。自1998年在淮南煤礦推廣這一技術(shù)以來現(xiàn)已取得明顯的經(jīng)濟(jì)效益和社會效益。</p><p> 考慮這些對比,在1997年至2005年期間該地區(qū)有10個(gè)礦山在此期間,天然氣開采量從10百萬m3增加1.5億m3,煤炭的年產(chǎn)量從1百萬噸增長到3百萬噸,工作面年產(chǎn)量從0.6百萬噸增加到3.63百萬噸,瓦斯提取率從5%增加到70%。與此同時(shí)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 深部高瓦斯雙突礦井揭煤技術(shù)應(yīng)用
- 外文翻譯--現(xiàn)有開采方法在礦井深部開采中應(yīng)用的評估
- 礦井深部開采支護(hù)技術(shù)研究
- 礦井深部開采支護(hù)技術(shù)研究.pdf
- 高瓦斯礦井瓦斯抽采技術(shù)
- 高瓦斯礦井綜放開采采空區(qū)瓦斯治理數(shù)值模擬研究.pdf
- 高瓦斯礦井特厚開采煤層注水技術(shù)研究與應(yīng)用
- 深部開采礦井瓦斯涌出量分源預(yù)測法完善研究.pdf
- 濟(jì)北礦區(qū)深部開采底板水害防治關(guān)鍵技術(shù)研究.pdf
- 高瓦斯突出礦井瓦斯治理技術(shù)探究
- 高瓦斯礦井瓦斯抽采技術(shù).doc
- 外文翻譯--煤礦井下瓦斯治理技術(shù)的應(yīng)用
- 高瓦斯礦井瓦斯抽采技術(shù)發(fā)展
- 高瓦斯礦井瓦斯抽采技術(shù)發(fā)展
- 深部煤層開采礦井防治水技術(shù)研究.pdf
- 礦井深部開采礦壓與支護(hù)技術(shù)研究.pdf
- 高瓦斯礦井瓦斯抽采技術(shù)發(fā)展.docx
- 采礦外文翻譯---煤與瓦斯突出礦井無人工作面開采保護(hù)煤層的研究
- 外文翻譯---煤與瓦斯突出礦井無人工作面開采保護(hù)煤層的研究.docx
- 基于CAN總線和無線傳輸技術(shù)的礦井瓦斯監(jiān)測系統(tǒng)關(guān)鍵技術(shù)研究.pdf
評論
0/150
提交評論