版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p> 附件I 英文文獻(xiàn)翻譯</p><p> 在精鏜中提供穩(wěn)定高頻振動(dòng)的摩擦阻尼器</p><p> Evita Edhi, Tetsutaro Hoshi</p><p><b> 摘要</b></p><p> 在精鏜過(guò)程中防止發(fā)生超過(guò)10000Hz的高頻振動(dòng)而造成刀具壽命降低問(wèn)題的摩擦阻尼
2、器已研制成功。新阻尼器結(jié)構(gòu)簡(jiǎn)單,它由一個(gè)聯(lián)接在主振動(dòng)結(jié)構(gòu)上的附加質(zhì)量與一小塊永久磁鐵構(gòu)成。其原理是簡(jiǎn)單的,利用庫(kù)侖力和粘性摩擦將振動(dòng)能量消散在阻尼器和主振動(dòng)結(jié)構(gòu)的接口之間。阻尼器對(duì)高頻也有效,因此無(wú)需調(diào)諧,本文首先介紹了一種在精鏜中消除高頻顫振的摩擦阻尼器的典型設(shè)計(jì),其有效性由切削試驗(yàn)得以證明,并保證刀尖的正常壽命。對(duì)這種新型阻尼器基本原理的理解在理論和實(shí)驗(yàn)分析中得以介紹。在鏜削過(guò)程中這種新型阻尼器能夠有效的防止超過(guò)5000赫茲的顫振。
3、</p><p> 關(guān)鍵詞 高頻振動(dòng) 摩擦阻尼器 精鏜</p><p><b> 1、引言</b></p><p> 先前有研究報(bào)告稱(chēng)精鏜中出現(xiàn)超過(guò)10000赫茲的高頻顫振。這種頻率首先發(fā)現(xiàn)于留在切削表面的振紋上,然后在切削實(shí)驗(yàn)中直接使用激光位移計(jì)測(cè)量得到進(jìn)一步的證實(shí)。從鏜刀的自然彎曲振動(dòng)以及自我激發(fā)的切削過(guò)程中的動(dòng)力學(xué)再生效果、內(nèi)
4、調(diào)制虛部的影響和x-y方向的循環(huán)發(fā)現(xiàn)了這種顫振。本研究的目標(biāo)是防止這種顫振振動(dòng)的發(fā)生。</p><p> 預(yù)防切削顫振的有效措施可能是通過(guò)提高刀具系統(tǒng)的阻尼能力。阻尼能力是通過(guò)以下方面產(chǎn)生的:(1)包含在刀具系統(tǒng)接口處的某些微量滑動(dòng);(2)在晶界滑移內(nèi)部振動(dòng)引起的阻尼損耗(內(nèi)耗);(3)在主振動(dòng)結(jié)構(gòu)和振動(dòng)阻尼器接口處的摩擦。許多研究人員對(duì)不同類(lèi)型的用以防止顫振振動(dòng),并提高鏜刀或其他切削操作穩(wěn)定性的阻尼器進(jìn)行了研
5、究。</p><p> 該阻尼器已不是傳統(tǒng)阻尼器的動(dòng)態(tài)特性或沖擊特性了,動(dòng)態(tài)阻尼器包括額外的彈簧質(zhì)量子系統(tǒng),通過(guò)調(diào)節(jié)系統(tǒng)的固有頻率,使之與主體結(jié)構(gòu)相匹配。一般動(dòng)態(tài)阻尼器設(shè)計(jì)包括任意方向的滑動(dòng)或內(nèi)部摩擦耗能的彈性材料。彈性阻尼器由一個(gè)或多個(gè)的自由移動(dòng)機(jī)構(gòu)組成,其原理是利用自由移動(dòng)體撞擊主體結(jié)構(gòu)來(lái)耗散顫振能量。阻尼器受一定的速度影響才能有效的發(fā)揮其功能,因此不能適用于抑制低頻振動(dòng)。近來(lái)有報(bào)道一種動(dòng)力與摩擦混合阻尼器
6、,并發(fā)現(xiàn)它能有效地抑制低頻振動(dòng)。</p><p> 本文中所設(shè)計(jì)的阻尼器必須能有效地抑制高達(dá)10000赫茲的高頻率顫振,而且它的設(shè)計(jì)受到鏜刀本身的工作空間及其自身大小的限制。它最完美的地方就是不需要調(diào)整。該阻尼器在本研究提出一個(gè)大規(guī)模隸屬永磁結(jié)構(gòu)的概念。</p><p> 本研究的目的是為了分析抑制高頻振顫阻尼器的有效性及其阻尼特性。</p><p> 為了實(shí)
7、現(xiàn)這一目標(biāo),已進(jìn)行一個(gè)類(lèi)似于抑制精鏜中高頻顫振的切削試驗(yàn)以及理論和實(shí)驗(yàn)的能源阻尼耗能分析。</p><p> 2、鏜刀測(cè)試和阻尼器結(jié)構(gòu)的構(gòu)想</p><p> 根據(jù)研究,在精鏜中原本有一個(gè)高頻顫振問(wèn)題,鏜刀本身包括一個(gè)直徑分別為13毫米和20毫米的長(zhǎng)懸臂桿和法蘭。在桿的一端有一直徑為5.5毫米的小孔,以適應(yīng)5毫米或孔徑更小的阻尼器。該孔的位置選擇在徑向方向,因?yàn)槲覀円呀?jīng)知道高頻振動(dòng)在X
8、-Y方向循環(huán)。當(dāng)鏜刀空轉(zhuǎn)時(shí),阻尼器被孔壁的離心力推動(dòng)但可以再?gòu)较蚍较蜃杂梢苿?dòng)。上限用以保護(hù)運(yùn)行中的阻尼器。</p><p> 該阻尼器的有效性已經(jīng)通過(guò)了檢測(cè)并準(zhǔn)備和其他鏜刀做比較。</p><p> 用作比較的工具之一具有相同直徑的長(zhǎng)懸臂桿即直徑為13毫米,但其延伸超出了前沿10毫米并產(chǎn)生約5000赫茲的顫振振動(dòng)。其他與之比較是16毫米直徑懸臂式鏜刀,將以更大的長(zhǎng)徑比產(chǎn)生較低頻率的顫振
9、振動(dòng)。</p><p> 新型摩擦阻尼器的基本結(jié)構(gòu)是一個(gè)附加質(zhì)量和永久磁鐵的組合,其中質(zhì)量平面平行于主結(jié)構(gòu)的振動(dòng)方向。磁鐵可以是不可分割的或者是可分割的都行。另一部件,墊片,可以插入到永久磁鐵和主要結(jié)構(gòu)之間,其目的是控制電磁力的大小。新型摩擦阻尼器在抑制高頻振動(dòng)的有效性已得到積極評(píng)價(jià)。</p><p><b> 實(shí)驗(yàn)方法</b></p><p&
10、gt; 為了驗(yàn)證該阻尼器控制顫振的有效性,并保證正常的刀具磨損和表面粗糙度,切削試驗(yàn)將與其設(shè)計(jì)尺寸一樣,與13毫米直徑的鉆孔工具配合使用。這樣的話(huà),鏜刀安裝在一個(gè)臥式加工中心的主軸上,通過(guò)設(shè)置調(diào)整孔直徑以自動(dòng)控制刀尖徑向位置。</p><p> 將內(nèi)表面是由旋轉(zhuǎn)刀具鏜加工的環(huán)型工件準(zhǔn)備好。工件的材料是SCM420H合金鋼,淬火至硬度為313~332HBS,外徑為25mm,內(nèi)徑為14.72±0.05m
11、m,長(zhǎng)度為15mm。工件由專(zhuān)門(mén)設(shè)計(jì)的具有足夠硬度的夾具裝夾。</p><p> 切削試驗(yàn)是在標(biāo)準(zhǔn)條件下進(jìn)行的,切削速度為130m/min,進(jìn)給量為0.03mm/rev,背吃刀量為0.14mm,切削過(guò)程中不使用任何切削液。一種新的尖端技術(shù)在加工過(guò)程中不斷調(diào)整加工條件。每個(gè)試驗(yàn)重復(fù)兩次,其中一次在鏜刀系統(tǒng)中安裝阻尼器,而另一次不安裝。刀具材料用的是非涂層TiC金屬陶瓷,其軸向前角為-50,徑向前角為-150,刀尖圓
12、弧半徑為0.4mm。</p><p> 對(duì)于直徑為16毫米的工件振動(dòng)的測(cè)量,準(zhǔn)備用另一個(gè)安裝程序?qū)h(huán)行工件的外表面固定。這樣的話(huà),工件被夾緊使測(cè)試在一對(duì)立式加工中心機(jī)床基板上舉行。環(huán)行工件和機(jī)床主軸一同旋轉(zhuǎn)。</p><p> 4.摩擦阻尼器的機(jī)理分析</p><p><b> 4.1 理論分析</b></p><p
13、> 振動(dòng)的產(chǎn)生,一旦達(dá)到一定的振動(dòng)幅度,阻尼器將開(kāi)始滑動(dòng),由此引起阻尼器的主體結(jié)構(gòu)和界面的摩擦,從而耗散振動(dòng)能量,并防止振幅不斷增大甚至超出極值振幅。</p><p><b> 實(shí)驗(yàn)分析</b></p><p> 為了確定該假設(shè)庫(kù)侖力和粘性摩擦的區(qū)別,一個(gè)主體結(jié)構(gòu)模型振動(dòng)的兩個(gè)理論模型的有效性監(jiān)測(cè)了二者的不同狀況,并激發(fā)了電動(dòng)式激振器外部。用作主體結(jié)構(gòu)的是
14、一直徑為16毫米的懸臂鋼梁,它和原長(zhǎng)為170mm的鏜刀具有相似的設(shè)計(jì),其二階彎曲頻約能達(dá)到5700Hz。在檢測(cè)梁的端部振動(dòng)時(shí)將使用微型加速度測(cè)量計(jì)。阻尼器主體結(jié)構(gòu)的頂部有一磁鐵,并通過(guò)此處與油管口相接。</p><p> 首先采用隨機(jī)激勵(lì)確定主體結(jié)構(gòu)的固有頻率。然后是應(yīng)用在正弦激勵(lì)變幅的動(dòng)力輸入f至z微調(diào)周?chē)S機(jī)激勵(lì)確定固有頻率。與此同時(shí),用FFT分析儀分析振幅在主體結(jié)構(gòu)出的響應(yīng)差異。激發(fā)各周期能源供應(yīng)量的正弦
15、振動(dòng)是從測(cè)量f時(shí)開(kāi)始的,計(jì)算如下</p><p> 當(dāng)x是降低阻尼器或與供油接口相連接時(shí),主體結(jié)構(gòu)的振幅也降低了。當(dāng)使用阻尼器時(shí),激勵(lì)由0.3N增至0.6N時(shí),振幅x將不會(huì)增大。對(duì)于較低的頻率,雖然也能有一定大的抗振效應(yīng),但效果并不明顯。</p><p><b> 5、結(jié)論</b></p><p> 為了控制頻率高達(dá)10000Hz的高頻顫
16、振,正如以前報(bào)道的精鏜過(guò)程一樣,利用一種新的阻尼器與主體結(jié)構(gòu)之間的摩擦效應(yīng),削弱振動(dòng)能量而達(dá)到減振目的。</p><p> 新的阻尼器由一個(gè)聯(lián)接在主振動(dòng)結(jié)構(gòu)上的附加質(zhì)量與一小塊永久磁鐵構(gòu)成。據(jù)目前的研究已證實(shí)了庫(kù)侖力和粘性摩擦在滑動(dòng)界面的產(chǎn)生。由于庫(kù)倫摩擦力,發(fā)生在主體結(jié)構(gòu)處的滑移就能抵消一部分顫振能量,而且它們之間大致是呈線(xiàn)性關(guān)系的。如果在此條件下能夠充分的消耗顫振能量,則就可以抑制顫振了。</p>
17、;<p> 在抑制高頻顫振時(shí),該阻尼器顯得更為有效。由于受到阻尼器主體結(jié)構(gòu)自身?xiàng)l件的限制,在精鏜中該阻尼器能抑制的最高顫振頻率只能略高于5000Hz。</p><p> 由于簡(jiǎn)單的結(jié)構(gòu)設(shè)計(jì),也無(wú)需經(jīng)常調(diào)整,使用擬阻尼器抑制連續(xù)切削高頻率顫振(如精鏜等)是一種可行性方法。</p><p><b> 致謝</b></p><p>
18、; 本研究得到了NT工程公司的大力支持。他們提供了大量的研究材料和工具,得到了Y. Komai先生和M. Nakagawa先生的大力支持和幫助。</p><p> 附件II 英文文獻(xiàn)原文</p><p> Stabilization of high frequency chatter vibration in fine boring by friction damper</p
19、><p> Evita Edhi*, Tetsutaro Hoshi</p><p><b> Abstract</b></p><p> Friction damper has been found successful to prevent high frequency chatter occurring at more than 10,
20、000Hz, and causing problem of reduced tool life in fine boring operation. The new damper is characterized by simple structure that consists of an additional mass attached to the main vibrating structure with small piece
21、of permanent magnet. The principle is straightforward in which Coulomb and viscous frictions dissipate vibration energy at the interface between the damper and main vibrating str</p><p> Keywords: High freq
22、uency chatter; Friction damper; Fine boring.</p><p> Introduction</p><p> A previous study reported fine boring tools exhibiting chatter at high frequency, more than 10,000Hz . The frequency w
23、as first identified from the chatter mark left on the surface, then further confirmed in cutting test by direct measurement using the laser displacement meter. The chatter was found attributable to bending natural vibrat
24、ion of the boring tool, self-excited by cutting process dynamics that include the regenerative effect, the imaginary part effect of inner modulation, and X-Y Loop</p><p> Effective chatter prevention during
25、 cutting operations may be achieved by increasing the damping capacity of cutting tool system. Damping capacity is generated through (i) micro-slip at certain interfaces included in the tool system, (ii) slip at the grai
26、n boundary within a vibrating body by material damping (internal friction), (iii) friction at an interface between the main vibrating body and the damper structure . Studies on various kind of damper to prevent chatter v
27、ibration, and to improve </p><p> Practical types of damper have been conventionally either dynamic or impact damper . Dynamic damper consists of additional spring-mass sub-system, and needs tuning of natur
28、al frequency of the sub-system to match that of the main structure. The dynamic damper is usually designed to include energy dissipation by either sliding or internal friction of the spring material. Impact damper consis
29、ts of one or more of free moving bodies, and the principle mechanism is to dissipate energy by the impact of</p><p> In the present study, the damper is required to be effective at frequencies as high as 10
30、,000Hz, and it should be designed within size limitation of the boring tool to accommodate space for seating the tool insert, chip pocket and the damper itself. It is also preferable that the damper needs no tuning. The
31、damper proposed in the present study consists of a piece of mass attached to the main structure by permanent magnet.</p><p> The objective of the present study is to analyze the effectiveness and characteri
32、stics of the proposed damper in preventing chatter vibration that occurs at high frequency.</p><p> To achieve the objective, cutting tests have been conducted in boring operation analogues to the one havin
33、g high frequency chatter problem in the plant, as well as theoretical and experimental analyses of energy dissipation of the proposed damper.</p><p> Boring tools tested and the proposed damper structure<
34、;/p><p> The boring tool under study that originally had a problem of high frequency chatter consists of a 13mm diameter and 20mm long cantilevered steel bar integral with a base flange. A small diameter hole,
35、 5.5 mm, is prepared at the end of the bar to accommodate the damper mass of which diameter may be 5mm or less. The position of the hole is selected in radial orientation om1, because the high frequency vibration due to
36、X-Y looping has been known to occur dominantly in the orientation om2 as depicte</p><p> The effectiveness of the damper has been tested for the tool as shown in the figure, as well as other boring tools th
37、at have been prepared for comparison.</p><p> One of the comparison tools has the same diameter 13mm, but extended 10mm beyond the cutting edge, and generates chatter vibration at about 5,000Hz. Other compa
38、risons are 16mm diameter cantilever type boring tools, designed with greater length (L) to diameter (D) ratios that exhibit chatter at lower frequencies.</p><p> Basic structure of the new friction damper i
39、s the combination of a mass and permanent magnet, which anchors the mass to the main structure on a flat surface parallel to the direction of vibration. The magnet may be either integral or separated with the mass. A thi
40、rd member, a spacer, may be inserted between the permanent magnet and the main structure whose purpose is to control magnitude of magnetic force. Effectiveness of the friction dampers in suppressing high frequency chatte
41、r has been evalu</p><p> 3. Method of experiment</p><p> To validate the effectiveness of the damper in view of controlling the chatter, and to assure normal tool wear and surface roughness ge
42、nerated, cutting tests have been performed with the 13mm diameter boring tool rotated as it is in production site. In this case,the boring tool is mounted on the main spindle of a horizontal machining center via a settin
43、g head whose function is to adjust the radial position of the tool tip for automatic control of the hole diameter in production.</p><p> Ring type workpieces have been prepared whose inner surface is to be
44、machined by the rotating boring tool. Rings are made of SCM420H alloy steel, hardened to 313 to 332 Brinnell hardness with 25mm outer diameter, 14.72±0.05mm inner diameter, and 15mm length. A milling chuck clamps th
45、e ring on a specially designed fixture with sufficient stiffness.</p><p> The standard condition for cutting test is set to 130m/min cutting speed, 0.03mm/rev feed rate, 0.14mm depth of cut, and using no cu
46、tting fluid. A new cutting edge is prepared for each set of cutting tests in which workpieces are continuously machined. The cutting test is repeated twice for each boring tool system with and without the damper. Tool in
47、sert material used for the boring tool is TiC Cermet non-coated, with axial rake angle -5°, radial rake angle -15°, and nose radius 0.4mm.</p><p> For measuring vibration of the 16mm diameter tool
48、, another setup was prepared with the tool held stationary, and used to machine outer surface of the rotating ring workpiece. In this setup, the tool is clamped by a milling chuck staged on a baseplate on the machine tab
49、le of vertical machining center. The ring workpiece is mounted and rotated by the machine spindle.</p><p> 4. Analysis of friction damper mechanism</p><p> 4.1 Theoretical analysis</p>
50、<p> During the development of chatter, once the vibration reaches certain threshold amplitude, the damper will start sliding, therefore introducing friction at the interface between the damper mass and the main st
51、ructure. The friction dissipates the vibration energy, and prevents the chatter from growing beyond the threshold amplitude.</p><p> 4.2 Experimental analysis</p><p> In order to ascertain val
52、idity of the two theoretical models assuming Coulomb and viscous friction respectively, vibration of a main structure model has been monitored with and without the damper mass attached, and excited externally by an elect
53、ro-dynamic exciter. a cantilevered steel beam 16mm diameter, having similar cutting edge design with the original boring tool and 170mm length, has been used as the main structure whose second order bending mode was exci
54、ted around 5,700Hz frequency. The v</p><p> Random excitation is first applied to identify the natural frequency of the main structure. Then sinusoidal excitation is applied at variable amplitude f of the i
55、nput dynamic force F at frequency Z finely tuned around the natural frequency identified by random excitation. At the same time, amplitude x of response vibration X of the main structure, and the phase difference between
56、 input dynamic force and response vibration , are measured by the FFT Analyzer.</p><p> Amount of energy supplied Es per vibration cycle by the sinusoidal excitation is computed from the measured f,as follo
57、ws:</p><p> vibration amplitude x of the main structure is reduced when the damper is attached on either dried or oiled interface. When the damper is used, the amplitude x exhibits a stagnant step during th
58、e excitation force increment from 0.3 to 0.6N.</p><p> 5. Conclusion</p><p> To control chatter vibration occuring at frequencies as high as 10,000Hz, as previously reported in fine boring ope
59、ration, performance of a new damper mechanism utilizing friction between a damper mass and the main vibrating structure has been evaluated by cutting and excitation experiments.</p><p> The new damper consi
60、sts of a piece of mass attached to the main structure by permanent magnet. It has been confirmed by the present study that both Coulomb and viscous frictions are occurring at the sliding interface. Due to the Coulomb fri
61、ction, there occurs threshold amplitude where the mass starts sliding with respect to the main structure and dissipates a certain amount of vibration energy, which is approximately in linear proportion to the vibration a
62、mplitude. When the energy dissipation at</p><p> The damper has been found to be more effective for tools that generate chatter vibration at higher frequencies. From the physical size limit of the damper ma
63、ss for attachment to the main structure, friction damper is practical for tools which vibrate at frequencies higher than 5,000Hz.</p><p> Due to simple structural design and no need of tuning, the proposed
64、damper is a viable solution for the high frequency chatter vibration of continuous cutting operations such as fine boring.</p><p> Acknowledgements</p><p> This research was supported by NT-En
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯--在精鏜中提供穩(wěn)定高頻振動(dòng)的摩擦阻尼器
- 基于sma摩擦復(fù)合阻尼器振動(dòng)控制的試驗(yàn)研究
- 基于SMA-摩擦復(fù)合阻尼器振動(dòng)控制的試驗(yàn)研究.pdf
- 壓電摩擦阻尼器本構(gòu)模型的分析及其在振動(dòng)控制中的應(yīng)用.pdf
- 基于壓電摩擦阻尼器的結(jié)構(gòu)振動(dòng)控制理論與試驗(yàn)研究.pdf
- [雙語(yǔ)翻譯]外文翻譯--纜索與 tmd-mr 阻尼器振動(dòng)控制系統(tǒng)實(shí)驗(yàn)探索
- 基于粘滯阻尼器及調(diào)諧阻尼器的轉(zhuǎn)子系統(tǒng)振動(dòng)控制研究.pdf
- [雙語(yǔ)翻譯]外文翻譯--纜索與 tmd-mr 阻尼器振動(dòng)控制系統(tǒng)實(shí)驗(yàn)探索(譯文)
- [雙語(yǔ)翻譯]外文翻譯--纜索與 tmd-mr 阻尼器振動(dòng)控制系統(tǒng)實(shí)驗(yàn)探索(英文)
- 調(diào)諧質(zhì)量阻尼器對(duì)樓板的振動(dòng)控制
- 磁流變阻尼器的橋梁振動(dòng)控制.pdf
- 基于智能材料的振動(dòng)阻尼器的研究.pdf
- 基于OpenSees的形狀記憶合金-摩擦復(fù)合阻尼器對(duì)結(jié)構(gòu)振動(dòng)控制的研究.pdf
- 2007年外文翻譯--纜索與 tmd-mr 阻尼器振動(dòng)控制系統(tǒng)實(shí)驗(yàn)探索
- 阻尼力可變摩擦阻尼器的減震性能比較研究.pdf
- 粘彈性阻尼器在控制輸電鐵塔振動(dòng)中的應(yīng)用.pdf
- 阻尼器.dwg
- 磁流變阻尼器在結(jié)構(gòu)振動(dòng)控制中的應(yīng)用研究.pdf
- 彈性支承干摩擦阻尼器減振研究.pdf
- 自反饋控制摩擦阻尼器耗能性能研究.pdf
評(píng)論
0/150
提交評(píng)論