多agent系統(tǒng)中并行聯(lián)盟機(jī)制研究.pdf_第1頁(yè)
已閱讀1頁(yè),還剩86頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、合肥工業(yè)大學(xué)博士學(xué)位論文多agent系統(tǒng)中并行聯(lián)盟機(jī)制研究姓名:蘇兆品申請(qǐng)學(xué)位級(jí)別:博士專業(yè):計(jì)算機(jī)應(yīng)用技術(shù)指導(dǎo)教師:蔣建國(guó)20081001ABSTRACTInopen,distributed,andheterogeneousmultiagentsystems(MAS),allagentmaybemotivatedtointeractandcooperatewithotheragentswhenitencounterstasksthat

2、aredifficulttoaccomplishwithitsnarrowfunctionalcapabilitiesandresourcesMoreover’itisoftenbeneficialtoassignagroupofagentstoataskandthatgroup&agentsisusuallycalleda“coalition”Formingcoalitionsbecomesnecessarywhenasingleag

3、entcannotperformataskResearch011coalitioninMASisamajorresearchchallengeinthefieldofcontroltheoryHowevermostexistingresearchesareaddressedin“singletaskcoalition’and“serialgenerationofmultitaskcoalitions”,limitingthescopeo

4、ftheirapplicationsinreal—worldscenariosAgainstthisbackground,wedevelopanovel“ParallelCoalition’inenvironmentswheremanytasksmustbeexecutedsimultaneouslyInthisdissertation,weaddresstheproblemofgeneration,formationandevalua

5、tionofparallelcoalitioninmulti—taskenvironmentswhereanagentmayjoininseveraldifferentcoalitionsOuraimistoimprovetheefficiencyofsolvingtasksandutilizingresourcesandprovideatheoreticalandmethodologicalguidanceformanycomplic

6、atedcontrolproblemsThemainresearchcontentsandinnovativecontributionsofthisdissertationareaSfollows:(1)Weproposeamulti—taskcoalitionparallelgenerationalgorithmbasedonimprovedimlnunealgorithmAnabilitypartitionstrategybased

7、ondimensionandanovel‘‘ChildAgent”areintroducedAnimprovedimmunealgorithmwithvaccineadaptiveobtainingandthreedimensionalbinaryencodingisappliedtosolvemultitaskcoalitionparallelgenerationproblemSpeciallyouralgorithmrealizes

8、theconditionthatanagentCantakepartinseveraldifferentcoalitionssimultaneouslyMoreovertheexperimentalresultshowsthatouralgorithmisefficientandrobust(2)Weproposeamultitaskcoalitionparallelformationstrategybasedonreinforceme

9、ntlearningFirstlywededucefromtheorythattheprocessofmulti—taskcoalitionformationisaMarkovdecisionprocessThenreinforcementlearningmechanismisadoptedtodescribeagents。behaviorstrategyandtheprocessofmulti—taskcoalitionparalle

10、lformationisdescribedInparallelmultitaskdomains,ourstrategyformsmultitaskcoalitionseffectivelyandCallconvergetoalloptimalsolutionwithprobabilityone(3)WeproposeanoveltwolayeredevaluationmethodonagentcoalitionInthisdissert

11、ationweevaluateacoalitionfromuniversalityandaggregateallexpertsconclusionbasedonDempsterShafer(D—S)evidentialtheorywhichcallclearlydescribeuncertaintyandincompletionofproblemsandexpressexperts’comprehensionsmartlyWeevalu

12、ateonagentcoalitionaccordingtoagentabilityharmoniousperformance,communicationcost,familiarityandsustainabledevelopmentSpeciallyourevaluationmethodcompletelyaccordswithhumant11inkingandjudgment。Moreovegourmethodisagile,va

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論