版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、附錄 附錄 2:外文翻譯 :外文翻譯Robust Analysis of Feature Spaces: Color Image SegmentationAbstractA general technique for the recovery of significant image features is presented. The technique is based on the mean shift algorithm, a
2、simple nonparametric procedure for estimating density gradients. Drawbacks of the current methods (including robust clustering) are avoided. Feature space of any nature can be processed, and as an example, color image se
3、gmentation is discussed. The segmentation is completely autonomous, only its class is chosen by the user. Thus, the same program can produce a high quality edge image, or provide, by extracting all the significant colors
4、, a preprocessor for content-based query systems. A 512 512 color image is analyzed in ?less than 10 seconds on a standard workstation. Gray level images are handled as color images having only the lightness coordinate.
5、Keywords: robust pattern analysis, low-level vision, content-based indexinginformation must be provided by the user, and for multimodal distributions it is difficult to guess the optimal setting.Nevertheless, a reliable
6、general technique for feature space analysis can be developed using a simple nonparametric density estimation algorithm. In this paper we propose such a technique whose robust behavior is superior to methods employing ro
7、bust estimators from statistics.2 Requirements for RobustnessEstimation of a cluster center is called in statistics the multivariate location problem. To be robust, an estimator must tolerate a percentage of outliers, i.
8、e., data points not obeying the underlying distribution of the cluster. Numerous robust techniques were proposed, and in computer vision the most widely used is the minimum volume ellipsoid (MVE) estimator proposed by Ro
9、usseeuw.The MVE estimator is affine equivariant (an affine transformation of the input is passed on to the estimate) and has high breakdown point (tolerates up to half the data being outliers). The estimator finds the ce
10、nter of the highest density region by searching for the minimal volume ellipsoid containing at least h data points. The multivariate location estimate is the center of this ellipsoid. To avoid combinatorial explosion a p
11、robabilistic search is employed. Let the dimension of the data be p. A small number of (p+1) tuple of points are randomly chosen. For each (p+1) tuple the mean vector and covariance matrix are computed, defining an ellip
12、soid. The ellipsoid is inated to include h points, and the one having the minimum volume provides the MVE estimate.Based on MVE, a robust clustering technique with applications in computer vision was proposed in. The dat
13、a is analyzed under several \resolutions“ by applying the MVE estimator repeatedly with h values representing fixed percentages of the data points. The best cluster then corresponds to the h value yielding the highest de
14、nsity inside the minimum volume ellipsoid. The cluster is removed from the feature space, and the whole procedure is repeated till the space is not empty. The robustness of MVE should ensure that each cluster is associat
15、ed with only one mode of the underlying distribution. The number of significant clusters is not needed a priori.The robust clustering method was successfully employed for the analysis of a large variety of feature spaces
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯---特征空間穩(wěn)健性分析彩色圖像分割
- 外文翻譯---特征空間穩(wěn)健性分析彩色圖像分割
- 外文翻譯---特征空間穩(wěn)健性分析:彩色圖像分割
- 外文翻譯---特征空間穩(wěn)健性分析彩色圖像分割 英文
- 外文翻譯---特征空間穩(wěn)健性分析:彩色圖像分割.docx
- 外文翻譯---特征空間穩(wěn)健性分析:彩色圖像分割.docx
- 外文翻譯---特征空間穩(wěn)健性分析:彩色圖像分割 英文.pdf
- 外文翻譯---特征空間穩(wěn)健性分析:彩色圖像分割 英文.pdf
- 特征空間穩(wěn)健性分析彩色圖像分割畢業(yè)論文外文翻譯
- 外文翻譯--圖像分割
- 外文翻譯--圖像分割
- 外文翻譯--基于偏微分方程的彩色圖像分割
- 外文翻譯--基于偏微分方程的彩色圖像分割
- 彩色圖像分割.pdf
- 外文翻譯--基于偏微分方程的彩色圖像分割(譯文)
- 外文翻譯--基于偏微分方程的彩色圖像分割(英文)
- 外文翻譯--基于偏微分方程的彩色圖像分割(英文).pdf
- 外文翻譯--基于偏微分方程的彩色圖像分割(英文).pdf
- 基于顏色空間部分的彩色圖像分割算法研究.pdf
- 外文翻譯--基于偏微分方程的彩色圖像分割(譯文).doc
評論
0/150
提交評論