版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、<p><b> 外文文獻(xiàn)翻譯</b></p><p> BRIDGE ENGINEERING AND AESTHETICS</p><p> Evolvement of bridge Engineering,brief review</p><p> Among the early documented reviews of
2、 construction materials and structure types are the books of Marcus Vitruvios Pollio in the first century B.C.The basic principles of statics were developed by the Greeks , and were exemplified in works and applications
3、by Leonardo da Vinci,Cardeno,and Galileo.In the fifteenth and sixteenth century, engineers seemed to be unaware of this record , and relied solely on experience and tradition for building bridges and aqueducts .The state
4、 of the art changed rap</p><p> Kuzmanovic(1977) focuses on stone and wood as the first bridge-building materials. Iron was introduced during the transitional period from wood to steel .According to recent
5、records , concrete was used in France as early as 1840 for a bridge 39 feet (12 m) long to span the Garoyne Canal at Grisoles, but reinforced concrete was not introduced in bridge construction until the beginning of this
6、 century . Prestressed concrete was first used in 1927.</p><p> Stone bridges of the arch type (integrated superstructure and substructure) were constructed in Rome and other European cities in the middle a
7、ges . These arches were half-circular , with flat arches beginning to dominate bridge work during the Renaissance period. This concept was markedly improved at the end of the eighteenth century and found structurally ade
8、quate to accommodate future railroad loads . In terms of analysis and use of materials , stone bridges have not changed much ,but the theo</p><p> Wooden trusses were used in bridges during the sixteenth ce
9、ntury when Palladio built triangular frames for bridge spans 10 feet long . This effort also focused on the three basic principles og bridge design : convenience(serviceability) ,appearance , and endurance(strength) . se
10、veral timber truss bridges were constructed in western Europe beginning in the 1750s with spans up to 200 feet (61m) supported on stone substructures .Significant progress was possible in the United States and Russia dur
11、i</p><p> The transition from wooden bridges to steel types probably did not begin until about 1840 ,although the first documented use of iron in bridges was the chain bridge built in 1734 across the Oder R
12、iver in Prussia . The first truss completely made of iron was in 1840 in the United States , followed by England in 1845 , Germany in 1853 , and Russia in 1857 . In 1840 , the first iron arch truss bridge was built acro
13、ss the Erie Canal at Utica . </p><p> The Impetus of Analysis </p><p> The theory of structures ,developed mainly in the ninetheenth century,focused on truss analysis, with the first book on
14、bridges written in 1811. The Warren triangular truss was introduced in 1846 , supplemented by a method for calculating the correcet forces .I-beams fabricated from plates became popular in England and were used in short-
15、span bridges.</p><p> In 1866, Culmann explained the principles of cantilever truss bridges, and one year later the first cantilever bridge was built across the Main River in Hassfurt, Germany, with a cente
16、r span of 425 feet (130m) . The first cantilever bridge in the United States was built in 1875 across the Kentucky River.A most impressive railway cantilever bridge in the nineteenth century was the First of Forth bridg
17、e , built between 1883 and 1893 , with span magnitudes of 1711 feet (521.5m).</p><p> At about the same time , structural steel was introduced as a prime material in bridge work , although its quality was o
18、ften poor . Several early examples are the Eads bridge in St.Louis ; the Brooklyn bridge in New York ; and the Glasgow bridge in Missouri , all completed between 1874 and 1883.</p><p> Among the analytical
19、and design progress to be mentioned are the contributions of Maxwell , particularly for certain statically indeterminate trusses ; the books by Cremona (1872) on graphical statics; the force method redefined by Mohr; and
20、 the works by Clapeyron who introduced the three-moment equations.</p><p> The Impetus of New Materials</p><p> Since the beginning of the twentieth century , concrete has taken its place as o
21、ne of the most useful and important structural materials . Because of the coMParative ease with which it can be molded into any desired shape , its structural uses are almost unlimited . Wherever Portland cement and suit
22、able aggregates are available , it can replace other materials for certain types of structures, such as bridge substructure and foundation elements .</p><p> In addition , the introduction of reinforced con
23、crete in multispan frames at the beginning of this century imposed new analytical requirements . Structures of a high order of redundancy could not be analyzed with the classical methods of the nineteenth century .The im
24、portance of joint rotation was already demonstrated by Manderla (1880) and Bendixen (1914) , who developed relationships between joint moments and angular rotations from which the unknown moments can be obtained ,the so
25、called slope</p><p> One of the most import important recent developments in the area of analytical procedures is the extension of design to cover the elastic-plastic range , also known as load factor or ul
26、timate design. Plastic analysis was introduced with some practical observations by Tresca (1846) ; and was formulated by Saint-Venant (1870) , The concept of plasticity attracted researchers and engineers after World War
27、 Ⅰ , mainly in Germany , with the center of activity shifting to England and the United States </p><p> A main step forward was the 1969 addition of the Federal Highway Adiministration (FHWA)”Criteria for R
28、einforced Concrete Bridge Members “ that covers strength and serviceability at ultimate design . This was prepared for use in conjunction with the 1969 American Association of State Highway Offficials (AASHO) Standard Sp
29、ecification, and was presented in a format that is readily adaptable to the development of ultimate design specifications .According to this document , the proportioning of reinf</p><p> Bridge Types </p
30、><p> A notable bridge type is the suspension bridge , with the first example built in the United States in 1796. Problems of dynamic stability were investigated after the Tacoma bridge collapse , and this wor
31、k led to significant theoretical contributions Steinman ( 1929 ) summarizes about 250 suspension bridges built throughout the world between 1741 and 1928 .</p><p> With the introduction of the interstate sy
32、stem and the need to provide structures at grade separations , certain bridge types have taken a strong place in bridge practice. These include concrete superstructures (slab ,T-beams,concrete box girders ), steel beam a
33、nd plate girders , steel box girders , composite construction , orthotropic plates , segmental construction , curved girders ,and cable-stayed bridges . Prefabricated members are given serious consideration , while inter
34、est in box section</p><p> Bridge Appearance and Aesthetics </p><p> Grimm ( 1975 ) documents the first recorded legislative effort to control the appearance of the built environment . This oc
35、curred in 1647 when the Council of New Amsterdam appointed three officials . In 1954 , the Supreme Court of the United States held that it is within the power of the legislature to determine that communities should be at
36、tractive as well as healthy , spacious as well as clean , and balanced as well as patrolled . The Environmental Policy Act of 1969 directs all agencies of th</p><p> Although in many civil engineering works
37、 aesthetics has been practiced almost intuitively , particularly in the past , bridge engineers have not ignored or neglected the aesthetic disciplines .Recent research on the subject appears to lead to a rationalized ae
38、sthetic design methodology (Grimm and Preiser , 1976 ) .Work has been done on the aesthetics of color ,light ,texture , shape , and proportions , as well as other perceptual modalities , and this direction is both theore
39、tically and empirica</p><p> Aesthetic control mechanisms are commonly integrated into the land-use regulations and design standards . In addition to concern for aesthetics at the state level , federal conc
40、ern focuses also on the effects of man-constructed environment on human life , with guidelines and criteria directed toward improving quality and appearance in the design process . Good potential for the upgrading of ae
41、sthetic quality in bridge superstructures and substructures can be seen in the evaluation structure typ</p><p> Lords and lording groups</p><p> The loads to be considered in the design of sub
42、structures and bridge foundations include loads and forces transmitted from the superstructure, and those acting directly on the substructure and foundation .</p><p> AASHTO loads . Section 3 of AASHTO spec
43、ifications summarizes the loads and forces to be considered in the design of bridges (superstructure and substructure ) . Briefly , these are dead load ,live load , iMPact or dynamic effect of live load , wind load , and
44、 other forces such as longitudinal forces , centrifugal force ,thermal forces , earth pressure , buoyancy , shrinkage and long term creep , rib shortening , erection stresses , ice and current pressure , collision force
45、, and earthquake stre</p><p> Permanent loads </p><p> Dead Load : this includes the weight DC of all bridge components , appurtenances and utilities, wearing surface DW nd future overlays , a
46、nd earth fill EV. Both AASHTO and LRFD specifications give tables summarizing the unit weights of materials commonly used in bridge work .</p><p> Transient Loads </p><p> Vehicular Live Load
47、(LL) Vehicle loading for short-span bridges :considerable effort has been made in the United States and Canada to develop a live load model that can represent the highway loading more realistically than the H or the HS A
48、ASHTO models . The current AASHTO model is still the applicable loading.</p><p><b> 橋梁工程和橋梁美學(xué)</b></p><p><b> 橋梁工程的發(fā)展概況</b></p><p> 早在公元前1世紀(jì),Marcus Vitruci
49、os Pollio 的著作中就有關(guān)于建筑材料和結(jié)構(gòu)類型的記載和評(píng)述。后來古希臘人創(chuàng)立了靜力學(xué)的基本原理, Leonardo da Vinci 、Cardeno和Galileo 等人在工作和應(yīng)用中也證實(shí)了這些原理的正確性。而在15世紀(jì)至16世紀(jì)期間,工程師們似乎并沒有注意到這些文字記載,只是單憑經(jīng)驗(yàn)和傳統(tǒng)來建造橋梁和渡槽。到了17世紀(jì)末, 隨著Leibnitz、Newton 和Bernoulli的數(shù)學(xué)理論的創(chuàng)立,橋梁建筑技術(shù)得到了快速發(fā)展
50、。Lahire (1695)和belidor(1729)出版的關(guān)于結(jié)構(gòu)理論分析的著作為材料力學(xué)領(lǐng)域奠定了基礎(chǔ)。</p><p> Kuzmanovic (1977)指出,石材和木材是橋梁建筑最早采用的材料。在從木材到鋼材的轉(zhuǎn)變過程中,鐵作為一種過渡材料被用于橋梁建筑中。根據(jù)近期的記載。早在1840年,法國就在Grisoles 建造了一座跨度為39英尺(12米)的橫跨 Garoyne 運(yùn)河的混凝土橋梁, 但鋼筋混
51、凝土橋直到本世紀(jì)初才出現(xiàn),而預(yù)應(yīng)力混凝土到1927年才開始使用。</p><p> 早在中世紀(jì),羅馬和歐洲的其他一些城市開始建造集上下部結(jié)構(gòu)于一體的半圓弧石拱橋,而文藝復(fù)興時(shí)期則是坦拱逐漸占主導(dǎo)地位。這種觀念在18世紀(jì)末有了明顯的改進(jìn),并發(fā)現(xiàn)其在結(jié)構(gòu)上能適應(yīng)后來的鐵路荷載。在材料的分析和使用上,石拱橋至今沒有發(fā)生大的變化,但是由于在17世紀(jì)70年代初期(Lahire,1965)引進(jìn)了壓力線的概念,使得拱橋的理論
52、分析得到了改進(jìn)。通過模型試驗(yàn),有關(guān)拱結(jié)構(gòu)的主要失效形式的理論得到了證實(shí)(Frezier ,1739)。對于無鉸拱,Culmann (1851 ) 引進(jìn)了彈性中心的方法,顯示了可用三個(gè)協(xié)調(diào)方程求解三個(gè)多余參數(shù)。</p><p> 當(dāng)palladio建造了一座跨度為10英尺的三角形木制框架橋后,16世紀(jì)開始,木桁架在橋梁中得到應(yīng)用。這些設(shè)計(jì)同樣遵循橋梁設(shè)計(jì)的三個(gè)基本原則:方便(實(shí)用性)、美觀和耐久性(強(qiáng)度)。18世
53、紀(jì)50年代西歐建造了若干座支承于石制橋墩上的木桁架橋,其跨度達(dá)到200英尺(61米)。19世紀(jì)期間,美國和俄羅斯由于其跨越主要河流的需要,而且兩國都具有豐富的適用于建橋的木材資源,因此木制橋梁在美、俄兩國有可能取得更為顯著的成績。木制橋梁具有良好的經(jīng)濟(jì)性,因?yàn)槠涑跗谕顿Y較低,施工速度較快。</p><p> 盡管有文獻(xiàn)記載,早在1734年,在普魯士就修建了第一座橫跨Oder河的鐵鏈橋,但從木橋到鋼橋的過渡大概開
54、始于1840年。美國于1840年建成了第一座全鐵桁架橋,其后,英格蘭、德國和俄羅斯分別于1845年、1853年和1857年也建成了鐵桁架橋。1840年,第一座鐵桁架拱橋出現(xiàn)在Utica的Erie運(yùn)河上。</p><p> 理論分析的推動(dòng)作用 </p><p> 主要從19世紀(jì)發(fā)展起來的機(jī)構(gòu)分析理論著重于桁架的分析,首部關(guān)于橋梁工程的著作于1811年出版。1846年出現(xiàn)了一種Warren
55、 三角形桁架和計(jì)算這種桁架精確內(nèi)力的分析方法。用板件組合而成的工字形梁在英國逐漸普及并在小跨度橋梁中得到應(yīng)用。</p><p> 1866年Culmann闡述了懸臂桁架橋的原理,一年后在德國的Hassfurt的Main 河上就建造了首座主跨跨度達(dá)425英尺(130米)的懸臂梁橋。美國的首座懸臂梁橋于1875年建于Kentucky河上。19世紀(jì)最引人注目的鐵路懸臂梁橋要數(shù)Firth of Forth橋,此橋建于1
56、883年至1890年間,跨度達(dá)1,711英尺(521.5米)大約就在這一時(shí)期,結(jié)構(gòu)鋼在橋梁工程中作為一種主要材料被推廣應(yīng)用,盡管此時(shí)鋼材的性能大都較差。幾個(gè)早期的工程實(shí)例是:(1)St.Louis的Eads 橋;(2)New York的Brooklyn 橋;(3)Missouri 的 Glasgow 大橋,這些橋都建于1874年至1883年間。</p><p> 談起對結(jié)構(gòu)分析河設(shè)計(jì)理論的改進(jìn)特別應(yīng)該提到:Ma
57、xwell 所作的貢獻(xiàn),尤其是他在超靜定桁架方面的工作;Cremona 關(guān)于圖解靜力學(xué)的著作(1872);由Mohr 重新定義的力法以及Clapeyron 提出的三彎矩方程</p><p><b> 新材料的推動(dòng)作用</b></p><p> 自從20世紀(jì)初起,混凝土就是一直是最有效和最重要的建筑材料之一。由于混凝土可以較容易地澆注成各種形狀的結(jié)構(gòu)物,因此它在建筑
58、上的使用價(jià)值幾乎是無限的。只要有普通水泥和合適的骨料混凝土就可以替代其他材料建造某些類型的結(jié)構(gòu),諸如橋梁下部結(jié)構(gòu)及基礎(chǔ)等。</p><p> 另外,在本世紀(jì)初,鋼筋混凝土在多跨框架結(jié)構(gòu)中的應(yīng)用對結(jié)構(gòu)分析提出了新的分析要求用19 世紀(jì)的古典分析方法不能用來分析高次靜定結(jié)構(gòu)。Manderla (1880)和Bendixen (1914)論證了節(jié)點(diǎn)轉(zhuǎn)角的重要性,提出了節(jié)點(diǎn)彎矩和轉(zhuǎn)角之間的關(guān)系,從而可求解未知的節(jié)點(diǎn)彎矩
59、,這種方法被稱為轉(zhuǎn)角-撓度法。 Calisev (1923)的工作使得框架結(jié)構(gòu)的分析有可能進(jìn)一步簡化,他利用逐步近似的方法將方程組的求解簡化為一個(gè)簡單表達(dá)式的迭代計(jì)算。Cross (1930)進(jìn)一步改進(jìn)和歸納了這種方法,從而形成了彎矩分配法。</p><p> 在結(jié)構(gòu)分析領(lǐng)域的近期發(fā)展中最重要的改進(jìn)之一是將設(shè)計(jì)的范圍延伸到彈塑性范圍,即所謂的荷載因子法或極限狀態(tài)設(shè)計(jì)法。Tresca (1846) 根據(jù)一些世紀(jì)觀
60、察結(jié)果提出了塑性分析法,Saint-Venant (1870)系統(tǒng)地闡述了這種分析方法。第一次世界大戰(zhàn)以后,塑性的概念吸引著研究人員和工程師們的注意力,開始主要是在德國。二次世界大戰(zhàn)后,隨著科研學(xué)術(shù)重心的轉(zhuǎn)移,英國和美國的科研人員對此進(jìn)行了廣泛的研究。概率設(shè)計(jì)法是一種新的設(shè)計(jì)方法,這種方法有望替代傳統(tǒng)的確定性方法。</p><p> 一個(gè)主要的進(jìn)步是1969版的美國聯(lián)邦公路管理局(FHWA)的“鋼筋混凝土橋梁勾
61、踐設(shè)計(jì)準(zhǔn)則”中包括了強(qiáng)度和正常使用的極限狀態(tài)設(shè)計(jì)法。這本設(shè)計(jì)準(zhǔn)則是與“美國各州公路工作者協(xié)會(huì)(AASHO)”1969年的設(shè)計(jì)規(guī)范聯(lián)合使用的,它的表達(dá)方式使其很容易適應(yīng)極限狀態(tài)設(shè)計(jì)規(guī)范的發(fā)展。根據(jù)這本設(shè)計(jì)準(zhǔn)則,鋼筋混凝土勾踐(包括柱)的配料可以通過其各個(gè)階段的工作性能來限定:彈性的、帶裂縫工作的極限狀態(tài)的。設(shè)計(jì)是荷載作用效應(yīng),所有根據(jù)作用荷載計(jì)算所得的量叫做設(shè)計(jì)值,如:設(shè)計(jì)彎矩、設(shè)計(jì)軸載或或設(shè)計(jì)剪力。結(jié)構(gòu)的承載力被認(rèn)為是結(jié)構(gòu)抗力方面的參數(shù)
62、,所有根據(jù)材料的理論強(qiáng)度計(jì)算得來并經(jīng)過修正得強(qiáng)度計(jì)算值叫做結(jié)構(gòu)抗力值,如:彎矩抗力值(抵抗彎矩),軸力抗力值或剪力抗力值。在正常使用極限狀態(tài)下,需驗(yàn)算構(gòu)件得撓度、最大裂縫寬度和疲勞強(qiáng)度。</p><p><b> 橋型</b></p><p> 一種值得注意得橋型是吊橋,首座吊橋1796年建于美國。隨著Tacoma大橋得跨塌,動(dòng)力穩(wěn)定被作為問題來研究,并取得了顯著
63、得理論成果。Steinman (1929) 總結(jié)了全世界建于1741年至1928年間得大約250座吊橋。</p><p> 隨著州際體系得建立和結(jié)構(gòu)等級(jí)分類的需要,某些橋型在橋梁界占有重要的地位。這些橋型包括混凝土上部結(jié)構(gòu)(板橋、T梁橋、混凝土箱梁橋)、鋼梁橋、鋼箱梁橋、組合界哦故、正交異性板結(jié)構(gòu)、分段施工的結(jié)構(gòu)、曲線梁橋和斜拉橋。預(yù)制構(gòu)件受到了足夠的重視,箱型截面梁也占有重要的地位。</p>&
64、lt;p> 橋梁的外觀及橋梁美學(xué)</p><p> Grimm(1975)考證了歷史上首例關(guān)于控制建筑環(huán)境美學(xué)的立法記錄,這發(fā)生在1647年,當(dāng)時(shí)的新阿姆斯特丹委員會(huì)派三名官員負(fù)責(zé)此事。1954年,美國聯(lián)邦最高法院認(rèn)為,立法機(jī)關(guān)有權(quán)決定公共場所不但要有利于公眾健康,還要做到賞心悅目;不但要干凈,還要寬敞;不但要通暢,還要布局均衡。1969年的環(huán)境政策法規(guī)要求聯(lián)邦政府各機(jī)構(gòu)對目前尚未量化的環(huán)境舒適性指標(biāo)提
65、出評(píng)價(jià)方法,在考慮技術(shù)經(jīng)濟(jì)指標(biāo)的同時(shí),對美觀給予適當(dāng)?shù)目紤]。</p><p> 盡管在很多土木工程結(jié)構(gòu)中,幾乎是憑直觀考慮美學(xué)問題,尤其在過去,但橋梁工程師們并沒有忽略美學(xué)方面的訓(xùn)練。最近關(guān)于的研究似乎可以得到一種美學(xué)設(shè)計(jì)方法論(Grimm和Preiser,1976)。有關(guān)顏色、光線、質(zhì)地、形狀、比例以及其他感知形態(tài)的美學(xué)研究已經(jīng)展開,這個(gè)方向無論在理論上還是經(jīng)驗(yàn)上都是明確的。</p><p
66、> 美學(xué)控制機(jī)制一般都與土地使用規(guī)則和設(shè)計(jì)標(biāo)準(zhǔn)結(jié)合在一起。除了州政府關(guān)心結(jié)構(gòu)美學(xué)以外,聯(lián)邦政府將主要精力集中在考慮人工環(huán)境對人類生活的影響上,以及制定準(zhǔn)則和規(guī)范以指導(dǎo)設(shè)計(jì)者在設(shè)計(jì)過程中改進(jìn)質(zhì)量和外觀。從為了改進(jìn)結(jié)構(gòu)整體外觀而進(jìn)行的橋型評(píng)估中可以看出,提高橋梁結(jié)構(gòu)美學(xué)質(zhì)量的潛力還是很大的。</p><p><b> 荷載及荷載組合</b></p><p>
67、在橋梁下部結(jié)構(gòu)和基礎(chǔ)設(shè)計(jì)中要考慮的荷載包括:從上部結(jié)構(gòu)傳下來的荷載和直接作用于下部結(jié)構(gòu)的基礎(chǔ)的荷載。</p><p> AASHTO荷載 AASHTO規(guī)范第三部分總結(jié)了橋梁設(shè)計(jì)(上、下部結(jié)構(gòu))要考慮的荷載和作用力。主要有:恒載、活載、活載沖擊力或動(dòng)力作用、風(fēng)荷載以及其他力——如縱向力、離心力、溫度力、土壓力、浮力收縮及徐變、拱肋縮短、安裝應(yīng)力、冰及水流壓力、沖撞力及地震應(yīng)力。除了這些通常能夠量化大的典型荷載外,
68、AASHTO同樣認(rèn)識(shí)到諸如活動(dòng)支座處產(chǎn)生的摩擦以及由于橋梁勾踐的沉降差而產(chǎn)生的應(yīng)力等間接荷載效應(yīng)。</p><p> LRFD規(guī)范將荷載劃分為截然不同的兩種:長期荷載和短期荷載。</p><p><b> 長期荷載</b></p><p> 荷載:包括所有橋梁構(gòu)件、器件及輔助設(shè)備、道路面層的凈重及未來鋪裝重量、填土恒載。AASHTO及LR
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 橋梁設(shè)計(jì)外文翻譯---橋梁工程和橋梁美學(xué)
- 橋梁工程和橋梁美學(xué)畢業(yè)論文外文翻譯
- 橋梁工程簡介外文翻譯
- 橋梁工程專業(yè)外文翻譯--橋梁的快速修復(fù)
- 橋梁設(shè)計(jì)外文翻譯---橋梁工程的發(fā)展概況
- 橋梁工程外文翻譯---橋梁裂縫產(chǎn)生原因淺析
- 外文翻譯---橋梁工程的發(fā)展概況
- (節(jié)選)橋梁工程外文翻譯--橋梁環(huán)境生命周期評(píng)估
- (節(jié)選)橋梁工程外文翻譯--橋梁環(huán)境生命周期評(píng)估
- 橋梁工程
- 橋梁工程
- 橋梁專業(yè)外文翻譯--現(xiàn)代橋梁美學(xué)的發(fā)展空間
- [雙語翻譯]--橋梁工程外文翻譯--新建橋梁壽命周期的成本分析
- [雙語翻譯]--橋梁工程外文翻譯--評(píng)估橋梁中鋼梁的耐火性
- [雙語翻譯]--橋梁工程外文翻譯--大型橋梁結(jié)構(gòu)健康監(jiān)測技術(shù)的發(fā)展
- (節(jié)選)橋梁工程外文翻譯--橋梁環(huán)境生命周期評(píng)估(譯文)
- (節(jié)選)橋梁工程外文翻譯--橋梁環(huán)境生命周期評(píng)估(原文)
- [雙語翻譯]--橋梁工程外文翻譯--橋梁火災(zāi)審查,評(píng)估及維修策略(節(jié)選)
- [雙語翻譯]--橋梁工程外文翻譯--大型橋梁結(jié)構(gòu)健康監(jiān)測技術(shù)的發(fā)展(譯文)
- [雙語翻譯]--橋梁工程外文翻譯--大型橋梁結(jié)構(gòu)健康監(jiān)測技術(shù)的發(fā)展(原文)
評(píng)論
0/150
提交評(píng)論