外文翻譯---齒輪的設計、制造和應用_第1頁
已閱讀1頁,還剩26頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、<p>  畢業(yè)設計(論文)外文資料翻譯</p><p>  學 院: </p><p>  專 業(yè): 機械設計制造及其自動化 </p><p>  姓 名: </p><p>  

2、學 號: </p><p>  外文出處: Mechanism and Machine Theory </p><p>  34 (1999) 857-876 </p><p>  附 件: 1.外文資料翻譯譯文;2.外文原文。</p><p>  附件1:外文

3、資料翻譯譯文</p><p>  動力傳動圓錐漸開線齒輪的設計、制造和應用</p><p>  Dr. J. Börner, K. Humm, Dr. F. Joachim, Dr. H. akaria,</p><p>  ZF Friedrichshafen AG , 88038Friedrichshafen, Germany;</p>

4、<p>  [摘要]圓錐漸開線齒輪(斜面體齒輪)被用于交叉或傾斜軸變速器和平行軸自由側隙變速器中。圓錐齒輪是在齒寬橫斷面上具有不同齒頂高修正(齒厚)的直齒或斜齒圓柱齒輪。這類齒輪的幾何形狀是已知的,但應用在動力傳動上則多少是個例外。ZF公司已將該斜面體齒輪裝置應用于各種場合:4W D轎車傳動裝置、船用變速器(主要用于快艇)機器人齒輪箱和工業(yè)傳動等領域。斜面體齒輪的模數(shù)在0. 7 mm-8 mm之間,交叉?zhèn)鲃咏窃?°-

5、 25°。之間。這些邊界條件需要對斜面體齒輪的設計、制造和質量有一個深入的理解。在錐齒輪傳動中為獲得高承載能力和低噪聲所必須進行的齒側修形可采用范成法磨削工藝制造。為降低制造成本,機床設定和由于磨削加工造成的齒側偏差可在設計階段利用仿真制造進行計算。本文從總體上介紹了動力傳動變速器斜面體齒輪的研發(fā),包括:基本幾何形狀、宏觀及微觀幾何形狀的設計、仿真、制造、齒輪測量和試驗。</p><p><b&g

6、t;  1前言</b></p><p>  在變速器中如果各軸軸線不平行的話,轉矩傳遞可采用多種設計,例如:傘齒輪或冠齒輪、萬向節(jié)軸或圓錐漸開線齒輪(斜面體齒輪)。圓錐漸開線齒輪特別適用于小軸線角度(小于15°),該齒輪的優(yōu)點是在制造、結構特點和輸入多樣性等方而的簡易。圓錐漸開線齒輪被用于直角或交叉軸傳動的變速器或被用于平行軸自由側隙工況的變速器。由于錐角的選擇并不取決于軸線交角,配對的齒輪

7、也可能采用圓柱齒輪。斜面體齒輪可制成外嚙合和內(nèi)齒輪,整個可選齒輪副矩陣見表1,它為設計者提供了高度的靈活性。</p><p>  圓錐齒輪是在齒寬橫截面上具有不同齒頂高修正(齒厚)量的直齒輪或斜齒輪。它們能與各種用同一把基準齒條刀具切制成的齒輪相嚙合。斜面體齒輪的幾何形狀是已知的,但它們很少應用在動力傳動上。過去,未曾對斜面體齒輪的承載能力和噪聲進行過任何大范圍的試驗研究。標準(諸如適用于圓柱齒輪的IS06336

8、)、計算方法和強度值都是未知的。因此,必須開發(fā)計算方法、獲得承載能力數(shù)值和算出用于生產(chǎn)和質量保證的規(guī)范。在過去的15年中,ZF公司已為錐齒輪開發(fā)了多種應用:</p><p>  1、輸出軸具有下傾角的船用變速[1、3]</p><p><b>  圖.1</b></p><p><b>  2、轉向器[1]</b><

9、/p><p>  3、機器人用小齒隙行星齒輪裝置(交叉軸角度1°一3°)[2]</p><p>  4、商用車輛的輸送齒輪箱(垃圾傾倒車)</p><p>  5、AWD用自動變速器[ 4],圖2</p><p><b>  2齒輪幾何形狀</b></p><p>  2. 1 宏

10、觀幾何形狀</p><p>  簡而言之,斜面體齒輪可看成是一個在齒寬橫截面上連續(xù)改變齒頂高修正的圓柱齒輪,如圖3。為此,根據(jù)齒根錐角δ刀具向齒輪軸線傾斜[ 1]。結果形成了齒輪基圓尺寸。</p><p><b>  螺旋角,左/右</b></p><p>  tanβ=tanβ·cosδ (l)</p><

11、;p>  橫向壓力角 左/右</p><p><b> ?。?)</b></p><p>  基圓直徑 左/右</p><p><b>  (3)</b></p><p>  左右側不同的基圓導致斜齒輪齒廓形狀的不均勻,圖3。采用齒條類刀具加工將使得齒根錐具有相應的根錐角δ。齒頂角設計

12、成這樣以使得頂端避免與被嚙合齒輪發(fā)生干涉,并獲得最大接觸區(qū)域。由此導致在齒寬橫截面上具有不同的齒高。由于幾何設計限制了根切和齒頂形狀,實際齒寬隨錐角增加而減小。錐齒輪傳動合適的錐角最大約為15°。</p><p>  2. 2微觀幾何形狀</p><p>  一對傘齒輪通常形成點狀接觸。除接觸外,在齒側還存在間隙,如圖7。齒輪修形設計的目的是減小這些間隙以形成平坦而均勻的接觸。通

13、過逐步應用嚙合定律有可能對齒側進行精確的計算[5],圖4。最后,在原始側生成半徑為rp和法向矢量為n的P1點。這生成速度矢量V及對于在嚙合一側所生成的點,有半徑矢量rp:</p><p><b>  (4)</b></p><p><b>  (5)</b></p><p><b>  和速度矢量</b&g

14、t;</p><p><b> ?。?)</b></p><p>  角速度根據(jù)齒輪速比確定:</p><p><b> ?。?)</b></p><p>  角度γ被反復迭代直至滿足下代。</p><p><b>  (8)</b></p>

15、<p><b>  嚙合點Pa偏轉角度</b></p><p><b> ?。?)</b></p><p>  繞齒輪軸轉動,形成共軛點P。</p><p><b>  3傳動裝置設計</b></p><p>  3. 1根切和齒頂形狀</p>&l

16、t;p>  斜面體齒輪的可用齒寬受到大端齒頂形狀和小端根切的限制,見圖3。齒高愈高(為獲得較大的齒高變位量),理論可用齒寬愈窄。小端根切和大端齒頂形狀導致齒高變位量沿齒寬方向發(fā)生變化。當一對齒輪的錐角大致相同時可獲得最大的可用齒寬。若齒輪副中小齒輪愈小,則該小齒輪必須采用更小的錐角。齒頂錐角小于齒根錐角時,通常能在小端獲得有用的漸開線,而在大端處有足夠齒頂間隙,這時大端的齒頂形狀并不太嚴重。</p><p>

17、;  3. 2工作區(qū)域和滑動速度</p><p>  斜面體齒輪工作區(qū)域產(chǎn)生扭歪的原因是圓錐半徑有形成平行四邊形趨勢。另外,工作壓力角在齒寬橫截面方向的改變也造成工作區(qū)域的扭曲。圖5是一個例子。在交叉軸傳動的斜面體齒輪上存在一滾動軸;如同圓柱齒輪副的滾動點一樣,在該軸上不存在滑動。對于傾斜軸布置而言,在輪齒嚙合處總存在另外的軸向滑動。由于工作壓力角在齒寬橫截面上變化,從小端到大端的接觸區(qū)內(nèi)的接觸軌跡有很大的變化。

18、因此,沿齒寬方向在齒頂和齒根處具有明顯不同的滑動速度。在齒輪中部,齒頂高修正的選擇是基于圓柱齒輪副的規(guī)范;在主動齒輪根部的接觸軌跡將小于齒頂?shù)慕佑|軌跡。圖6給出了斜面體齒輪副主動齒輪滑動速度的分布。</p><p><b>  4接觸分析和修形</b></p><p>  4. 1點接觸和間隙</p><p>  在未修正齒輪傳動中,由于軸線傾

19、斜,通常僅有一點接觸。沿可能接觸線出現(xiàn)的間隙可大致解釋為螺旋凸起和齒側廓線角度的偏差所致。圓柱齒輪左右側間隙與軸線交叉無關。對于螺旋齒輪而言,當兩斜面體齒輪錐角大致相同時,其產(chǎn)生的間隙也幾乎相等。隨兩齒輪錐角和螺旋角不一致的增加,左右側間隙的不同程度也增加。 </p><p>  在工作壓力角較小時將導致更大的間隙。圖7給出了具有相同錐角交叉軸傳動的斜面體

20、齒輪副所出現(xiàn)的間隙。圖8顯示了具有相同10°交叉軸線和30°螺旋角齒輪在左右側間隙方而的差異。兩側平均間隙的數(shù)值在很大程度上與螺旋角無關,但與兩齒輪的錐角相關。</p><p>  螺旋角和錐角的選擇決定了齒輪左右側平均間隙的分布。傾斜軸線布置對接觸間隙產(chǎn)生額外影響。這將有效減少齒輪一側的螺旋凸形。如果垂直軸線與總基圓半徑相同,并且基圓柱螺旋角之差等于交叉軸角的話,間隙減小到零并出現(xiàn)線接觸。然

21、而,在另一側將出現(xiàn)明顯的間隙。如果正交的軸線進一步擴大直至變成圓柱交叉軸螺旋齒輪副的話,其兩側間隙等同于較小的螺旋凸形。除螺旋凸形外,明顯的齒廓扭曲(見圖8)也是斜面體齒輪的間隙特征。隨螺旋角增加齒廓扭曲也隨之增加。圖9表明圖7所示齒輪裝置的齒廓是如何扭曲。為補償齒輪嚙合中所存在的間隙,必須采用齒側拓撲修形,該類修形可明顯補償螺旋凸形和輪廓扭曲。未對齒廓扭曲作補償?shù)脑?在工作區(qū)域僅有一個對角線狀的接觸帶,見圖10。</p>

22、<p><b>  4.2 齒側修形</b></p><p>  對于一定程度的補償而言,必需的齒面形狀可由實際間隙所決定。圖11給出了這些樣品的齒形幾何特征。采用修正后的接觸率得到了很大改善如圖12所示。為應用在系列生產(chǎn)中,其目標總是能使用磨床加工這類齒面,對此的選擇在第6節(jié)論述。除間隙補償外,齒頂修形也是有益的。修形減少了嚙合開始和結束階段的負荷,并能提供一較低的噪聲激勵源。

23、然而,斜面體齒輪的齒頂修形在齒寬橫截面上的加工總量上和長度上是不同的。問題主要出現(xiàn)在具有一個大根錐角但頂錐角與根錐角存在偏差的齒輪上。因此齒頂修形在小端明顯大于大端。如齒輪需要在嚙合開始和結束處修形,則必須接受這種不均勻的齒頂修形。利用其它錐角如根錐角進行齒頂修形加工也是可行的。但是,這樣需要專門用于齒頂卸載的專用磨削設備。與范成法磨削方法無關,齒側修正可采用諸如珩磨等手段;但在斜面體齒輪上應用這些方法尚處在早期開發(fā)階段。5 承載能力和

24、噪聲激勵</p><p>  5.1 計算標準的應用</p><p>  斜面體齒輪齒側和根部承載能力僅可用圓柱齒輪的計算標準(ISO 6336, DIN 3990, AGMAC95) 作近似估算。具體計算時用圓柱齒輪副替代斜面體齒輪,用斜面體齒輪中部的齒寬來定義圓柱齒輪的參數(shù)。雖然斜面體齒輪齒廓是非對稱的,但在替代齒輪中可不予考慮。替代齒輪的中心距由斜面體齒輪中部齒寬處的工作節(jié)圓半徑確定

25、。當計及齒寬橫截面時,各項獨立的參數(shù)都會變化,這將明顯影響承載能力。</p><p>  表2給出了影響齒根和齒側承載能力的主要因素。由于沿大端方向減小輪齒齒根圓角半徑所產(chǎn)生較大的凹口效應阻止了根部齒厚的增加。另外,在大端處,較大的節(jié)圓直徑可獲得較小的切向力;然而,大端處的齒高變位量也隨之變小。由于主要影響得到很好的平衡,因此可用替代齒輪副獲得十分近似的承載能力計算結果。齒寬橫截面上的載荷分布可用齒寬系數(shù)(例如D

26、IN/ISO標準中的K和K)表示和利用補充的負載曲線圖分析來確定。</p><p>  5.2 輪齒接觸分析</p><p>  如同在圓柱齒輪副中那樣,更精確的承載能力計算可采用三維輪齒接觸分析。同樣采用替代齒輪,而且齒側處接觸狀況被認為非常理想。該齒側形狀通過疊加經(jīng)齒側修正的無負載接觸間隙而獲得。在這里,接觸線由替代齒輪所確定,它們和斜面體齒輪的接觸狀況稍有不同。圖13給出了以這方法獲

27、得的載荷分布,并與已有的負載曲線圖作對比,兩者的相關性非常好。</p><p>  輪齒接觸分析也將生成一個作為激振源的由輪齒嚙合產(chǎn)生的傳動誤差。然而這僅能作為一個粗略的引導。在傳動誤差方面,斜面體齒輪接觸計算的不精確性是一個比載荷分布更大的影響因素。</p><p>  5.3 采用有限元法的精確建模</p><p>  斜面體齒輪的應力也能利用有限元法計算。圖1

28、4是齒輪橫斷面建模的實例。圖15給出了使用PERMAS軟件由計算機生成的主動齒輪在嚙合位置的輪齒嚙合區(qū)模型和應力分布計算值[7]??蓪Χ鄠€嚙</p><p>  合位置進行計算,并能求出齒輪旋轉產(chǎn)生的傳動誤差。</p><p>  5.4 承載能力和噪聲試驗</p><p>  在交叉軸背靠背試驗臺上對AWD變速器進行試驗以測量其承載能力,圖16。試驗齒輪采用不同的

29、修正,以確定它們對承載能力的影響。承載能力的試驗與有限元計算結果相當吻合。值得注意的是,由于大端硬度提高使得載荷曲線圖朝大端由一個額外的移動。這種移動在替代的圓柱齒輪副計算中不能被辨別。在進行承載能力試驗的同時,傳動誤差和旋轉加速度的測量在通用噪聲試驗臺上進行,圖17。除了載荷影響外,這些試驗還測量了附加軸線傾斜所引起的噪聲激勵,關于軸線附加傾斜,試驗中未發(fā)現(xiàn)有明顯的影響。</p><p><b>  

30、6 仿真制造</b></p><p>  借助于仿真制造,可獲得機床設置及連續(xù)范成磨削和產(chǎn)生齒廓扭曲的運動。齒廓受迫扭曲現(xiàn)象可在變速器設計階段就被認識到并與承載能力及噪聲一并進行分析。斜面體齒輪制造仿真軟件由ZF公司開發(fā),詳見[9]。</p><p>  6.1 適用于斜面體齒輪的制造方法</p><p>  斜面體齒輪僅可用范成法加工,因為齒廓形狀沿齒

31、寬方向有明顯的變化。盡管是錐角非常小的斜面體齒輪,必須承認在修整處理中仍然會出現(xiàn)齒廓角度偏差。滾刀最方便用于預切削。理論上也可采用刨削,但是,所需的運動在現(xiàn)有機床上很難實現(xiàn)。內(nèi)齒圓錐齒輪僅能用類似小齒輪的刀具精確制造,如果刀具軸線和工具軸線平行并且錐角是通過改變中心距生成的。如果內(nèi)齒輪利用軸線傾斜的小齒輪刀具如同加工差速器錐齒輪那樣來制造的話,將導致齒溝凸起和無修正運動的齒廓扭曲。對于小錐角而言這些偏差足夠小,可以被忽略。對于終加工,范

32、成法螺旋磨削是一個最佳選擇。如果工件或機床夾具能被另外傾斜,也可采用部分范成法。如果齒輪錐角處于機床控制范圍內(nèi),拓撲磨削工藝也是可能的(例如5軸機床),但是會耗費巨大的努力。原則上,珩磨等方法也能被用于加工,但是,在斜面體齒輪應用這些方法仍需大量的開發(fā)工作。雙齒側范成法磨削工藝并利用中心距弧形減少方法可實現(xiàn)齒溝凸起的目標。該方法所得到的齒廓扭曲與造成嚙合間隙的齒廓扭曲相反。因此該方法可在很大程度上補償齒廓扭曲并可承受比圓柱齒輪更大的載荷

33、。</p><p><b>  工件表面形狀</b></p><p>  以下的關于工件描述被應用在仿真中:</p><p>  ® 原始齒輪(留有磨削所需的余量) </p><p>  ®理想齒輪(來自齒輪數(shù)據(jù),無齒側修形)</p><p>  ®完成的齒輪(具有制

34、造偏差和齒側修形)</p><p><b>  參考文獻:</b></p><p>  J. A. MacBain, J. J. Conover, and A. D. Brooker, “Full-vehicle simulation for series hybrid vehicles,” presented at the SAE Tech. Paper, Futu

35、re Transportation Technology Conf., Costa Mesa, CA, Jun. 2003, Paper 2003-01-2301.</p><p>  X. He and I. Hodgson,“Hybrid electric vehicle simulation and evaluation for UT-HEV,”prmented at the SAE Tech. Paper

36、 Series, Future Transpotation Technology Conf., Costa Mesa, CA, Aug. 2000, Paper 2000-01-3105.</p><p>  K. E. Bailey and B. K. Powell,“A hybrid electric vehicle powertrain dynamic model,”inProc. Amer. Contro

37、l Conf., Jun. 21-23, 1995, vol. 3, pp. 1677-1682.</p><p>  B. K. Powell, K. E. Bailey, and S. R. Cikanek,“Dynamic modeling and control of hybrid electrie vehicle powertrain system,”IEEE Control Syst. Mag., v

38、ol, 18, no. 5. pp. 17-33, Oct. 1998.</p><p>  K. L. Butler, M. Ehsani, and P. Kamath,“A Matlabbared modeling and simulation package for electric and hybrid electric vehicle design,”IEEE Trans. Veh.Technol.,

39、vol. 48, no. 6, pp. 1770-1778, Nov. 1999.</p><p>  K. B. Wipke, M. R. Cuddy, and S. D. Burch,“ADVISOR 2.1: A user-friendly advanced powertrain simulation using a combined backward/forward approach,” IEEE Tra

40、ns. Veh. Technol., vol. 48. no. 6, pp.1751-1761, Nov. 1999.</p><p>  T. Markel and K. Wipke,“Modeling grid-connected hybrid electric vehicles using ADVISOR,”inProc.16th Annu. Battery Conf. Appl. and Adv.,Ja

41、n. 9-12.2001. pp. 23-29.</p><p>  S. M. Lukic and A. Emadi,“Effects of drivetrain hybridization on fuel economy and dynamic performance of parallel hybrid electric vehicles,”IEEE Trans. Veh.Technol., vol. 53

42、, no. 2, pp. 385-389, Mar. 2004.</p><p>  A. Emadi and S. Onoda,“PSIM-based modeling of automotive power systems: Conventional, electric, and hybrid electric vehicles,”IEEE Trans. Veh. Technol.,vol. 53, no.

43、2, pp. 390-400, Mar. 2004.</p><p>  J. M. Tyrus, R. M. Long, M. Kramskaya, Y. Fertman, and A. Emadi,“Hybrid electric sport utility vehicles,”IEEE Trans. Veh. Technol., vol. 53, no. 5,pp. 1607-1622, Sep. 2004

44、.</p><p><b>  附件2:外文原文 </b></p><p>  Application, Design, and Manufacturing of Conical Involute Gears for Power Transmissions</p><p>  Dr. J. Börner, K. Humm, Dr. F

45、. Joachim, Dr. H. Yakaria,</p><p>  ZF Friedrichshafen AG , 88038Friedrichshafen, Germany;</p><p>  [ABSTRACT] Conical involute gears (beveloids) are used in transmissions with intersecting or s

46、kew axes and for backlash-free transmissions with parallel axes. Conical gears are spur or helical gears with variable addendum modification (tooth thickness) across the face width. The geometry of such gears is generall

47、y known, but applications in power transmissions are more or less exceptional. ZF has implemented beveloid gear sets in various applications: 4WD gear units for passenger cars, marine tr</p><p>  1 Introduct

48、ion</p><p>  In transmissions with shafts that are not arranged parallel to the axis, torque transmission is</p><p>  possible by means of various designs such as bevel or crown gears , universa

49、l shafts , or conical involute gears (beveloids). The use of conical involute gears is particularly ideal for small shaft angles (less than 15°), as they offer benefits with regard to ease of production, design feat

50、ures, and overall input. Conical involute gears can be used in transmissions with intersecting or skew axes or in transmissions with parallel axes for backlash-free operation. Due to the fact that selection of</p>

51、<p><b>  Table 1.</b></p><p>  Conical gears are spur or helical gears with variable addendum correction (tooth thickness)</p><p>  across the face width. They can mesh with al

52、l gears made with a tool with the same basic rack. The geometry of beveloids is generally known, but they have so far rarely been used in power transmissions. Neither the load capacity nor the noise behavior of beveloids

53、 has been examined to any great extent in the past. Standards (such as ISO 6336 for cylindrical gears ), calculation methods, and strength values are not available. Therefore, it was necessary to develop the calculation

54、method, obtain t</p><p>  ® Marine transmissions with down-angle output shafts /1, 3/, Fig. 1</p><p>  ® Steering transmissions /1/</p><p>  ® Low-backlash planetary

55、gears (crossed axes angle 1…3°) for robots /2/</p><p>  ® Transfer gears for commercial vehicles (dumper)</p><p>  ® Automatic car transmissions for AWD /4/, Fig. 2</p><

56、;p>  2 GEAR GEOMETRY</p><p>  2.1 MACRO GEOMETRY</p><p>  To put it simply, a beveloid is a spur gear with continuously changing addendum modification across the face width, as shown in Fig.

57、3. To accomplish this, the tool is tilted towards the gear axis by the root cone angle ? /1/. This results in the basic gear dimensions:</p><p>  Helix angle, right/left</p><p>  tanβ=tanβ·

58、cosδ (1)</p><p>  Transverse pressure angle right/left</p><p><b>  (2)</b></p><p>  Base circle diameter right/left</p><p><b>  (3)</b></p&g

59、t;<p>  The differing base circles for the left and right flanks lead to asymmetrical tooth profiles at helical gears, Fig. 3. Manufacturing with a rack-type cutter results in a tooth root cone with root cone angl

60、e δ. The addendum angle is designed so that tip edge interferences with the mating gear are avoided and a maximally large contact ratio is obtained. Thus, a differing tooth height results across the face width.Due to the

61、 geometric design limits for undercut and</p><p>  tip formation, the possible face width decreases as the cone angle increases. Sufficiently well-proportioned gearing is possible up to a cone angle of appro

62、x. 15°.</p><p>  2.2 MICRO GEOMETRY</p><p>  The pairing of two conical gears generally leads to a point-shaped tooth contact. Out-side this contact, there is gaping between the tooth flank

63、s , Fig. 7. The goal of the gearing correction design is to reduce this gaping in order to create a flat and uniform contact. An exact calculation of the tooth flank is possible with the step-by-step application of the g

64、earing law /5/, Fig. 4. To that end , a point (P) with the radiusrP1and normal vectorn1is generated on the original flank. This generate</p><p><b>  (4)</b></p><p>  For the point cr

65、eated on the mating flank, the radial vector rp:</p><p><b>  (5)</b></p><p>  and the speed vector apply</p><p><b>  (6)</b></p><p>  The angul

66、ar velocities are generated from the gear ratio:</p><p><b>  (7)</b></p><p>  The angle γ is iterated until the gearing law in the form</p><p><b>  (8)</b>&l

67、t;/p><p>  is fulfilled. The meshing point Pa found is then rotated through the angle</p><p><b>  (9)</b></p><p>  around the gear axis, and this results in the conjugate f

68、lank point P.</p><p>  3 GEARING DESIGN</p><p>  3.1 UNDERCUT AND TIP FORMATION</p><p>  The usable face width on the beveloid gearing is limited by tip formation on the heel and un

69、dercut on the toe as shown in Fig. 3. The greater the selected tooth height (in order to obtain a larger addendum modification), the smaller the theoretically useable face width is. Undercut on the toe and tip formation

70、on the heel result from changing the addendum modification along the face width. The maximum usable face width is achieved when the cone angle on both gears of the pairing is selected to b</p><p>  3.2 FIELD

71、 OF ACTION AND SLIDING VELOCITY</p><p>  The field of action for the beveloid gearing is distorted by the radial conicity with a tendency towards the shape of a parallelogram. In addition, the field of actio

72、n is twisted due to the working pressure angle change across the face width. Fig. 5 shows an example of this. There is a roll axis on the beveloid gearing with crossed axes; there is no sliding on this axis as there is o

73、n the roll point of cylindrical gear pairs. With a skewed axis arrangement, there is always yet another axial slid</p><p>  4 CONTACT ANALYSIS AND MODIFYCATIONS</p><p>  4.1 POINT CONTACT AND EA

74、SE-OFF</p><p>  At the uncorrected gearing, there is only one point in contact due to the tilting of the axes. The gaping that results along the potential contact line can be approximately described by helix

75、 crowning and flank line angle deviation. Crossed axes result in no difference between the gaps on the left and right flanks on spur gears. With helical gearing, the resulting gaping is almost equivalent when both bevelo

76、id gears show approximately the same cone angle. The difference between the gap values on</p><p>  The selection of the helical and cone angles only determines the distribution of the mean gaping to the left

77、 and right flanks. A skewed axis arrangement results in additional influence on the contact gaping. There is a significant reduction in the effective helix crowning on one flank. If the axis perpendicular is identical to

78、 the total of the base radii and the difference in the base helix angle is equivalent to the (projected) crossed axes angle, then the gaping decreases to zero and line cont</p><p>  4.2 FLANK MODIFICATIONS&l

79、t;/p><p>  For a given degree of compensation, the necessary topography can be determined from the existing ease-off. Fig. 11 shows these types of typographies, which were produced on prototypes. The contact ra

80、tios have improved greatly with these corrections as can be seen in Fig.12. For use in series production, the target is always to manufacture such topographies on commonly used grinding machines. The options for this are

81、 described in Section 6. In addition to the gaping compensation, tip relief is al</p><p>  5 LOAD CAPACITY AND NOISE EXCITATION</p><p>  5. 1 APPLICATION OF THE CALCULATION STANDARDS</p>

82、<p>  The flank and root load capacity of beveloid gearing can only approximately be deter-mined using the calculation standards (ISO6336, DIN3990,AGMA C95) for cylindrical gearing. A substitute cylindrical gear pai

83、r has to be used, which is defined by the gear parameters at the center of the face width. The profile of the beveloid tooth is asymmetrical; that can, however, be ignored on the substitute gears. The substitute center

84、distance is obtained by adding up the operating pitch radii at the cent</p><p>  5.2 USE OF THE TOOTH CONTACT ANALYSIS</p><p>  A more precise calculation of the load capacity is possible with a

85、 three-dimensional tooth contact analysis, as used at cylindrical gear pairs. The substitute cylindrical gear pair can be used in this analysis and the contact conditions are considered very well with flank topography. T

86、his topography is obtained from the superimposition of the load-free contact ease-off with the flank corrections used on the gear. In this process, the contact lines are determined on the substitute cylindrical gea</p

87、><p>  This tooth contact analysis also generates the transmission error resulting from the tooth mesh as vibrational excitation. It can, however, only be used as a rough guide. The impreciseness in the contact

88、 behavior calculated has a stronger effect on the transmission error than it does on the load distribution.</p><p>  5.3 EXACT MODELING USING THE FINITE-ELEMENT METHOD</p><p>  The stress at the

89、 beveloid gears can also be calculated using the finite-element method. Fig. 14 shows examples of the modeling of the transverse section on the gears. Fig. 15 shows the computer-generated model in the tooth mesh section

90、and the stress distribution calculated with PERMAS /7/ on the driven gear in a mesh position. The calculation was carried out for multiple mesh positions and the transmission error can be determined from the rotation of

91、the gears.</p><p>  5.4 TESTS REGARDING LOAD CAPACITY AND NOISE</p><p>  A back-to-back test bench with crossed axes, upon which gear pairs from AWD transmissions were tested, was used to determ

92、ine the load capacity, Fig.16. Different corrections were produced on the test gears in order to ascertain their influence on the load capacity. There was good correlation between the load capacity in the test and the FE

93、 (finite element) results. Particularly noteworthy is an additional shift of the load pattern towards the heel due to the increased stiffness in this area. Thi</p><p>  6 MANUFACTURING SIMULATION</p>

94、<p>  With the assistance of the manufacturing simulation, machine settings and movements with continuous generation grinding as well as the produced profile twist can be obtained. Production-constrained profile twi

95、st can be considered as early as the design phase of a transmission and can be incorporated into the load capacity and noise analyses. Simulation software for the manufacturing of beveloids was specially developed at ZF,

96、 which is comparable to /9/.</p><p>  6.1 PRODUCTION METHODS THAT CAN BE USED FOR BEVELOIDS</p><p>  Only generating methods can be used to produce the beveloid gearing, because the shape of the

97、 tooth profile changes significantly along the face width. Only very slightly conical beveloids can be manufactured with the acknowledgment that there is profile angle deviation even with the shaping process. Hobs are th

98、e easiest to use for pre-cutting. Gear planning would theoretically be useable as well; however, the kinematics required makes this not really feasible on existing machines. Internal coni</p><p>  6.2 WORKPI

99、ECE GEOMETRY</p><p>  The following workpiece descriptions are used in the simulation:</p><p>  ® initial gear (with stock allowance for the grind processing)</p><p>  ®

100、 ideal gear (from the gear data, without flank corrections)</p><p>  ® finished gear (with production-constrained deviations and flank corrections).</p><p>  References</p><p>

101、;  J. A. MacBain, J. J. Conover, and A. D. Brooker, “Full-vehicle simulation for series hybrid vehicles,” presented at the SAE Tech. Paper, Future Transportation Technology Conf., Costa Mesa, CA, Jun. 2003, Paper 2003-01

102、-2301.</p><p>  X. He and I. Hodgson,“Hybrid electric vehicle simulation and evaluation for UT-HEV,”prmented at the SAE Tech. Paper Series, Future Transpotation Technology Conf., Costa Mesa, CA, Aug. 2000, P

103、aper 2000-01-3105.</p><p>  K. E. Bailey and B. K. Powell,“A hybrid electric vehicle powertrain dynamic model,”inProc. Amer. Control Conf., Jun. 21-23, 1995, vol. 3, pp. 1677-1682.</p><p>  B. K

104、. Powell, K. E. Bailey, and S. R. Cikanek,“Dynamic modeling and control of hybrid electrie vehicle powertrain system,”IEEE Control Syst. Mag., vol, 18, no. 5. pp. 17-33, Oct. 1998.</p><p>  K. L. Butler, M.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論