版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p> 畢 業(yè) 設(shè) 計(jì) 英 文 翻 譯</p><p> 學(xué) 院: 建筑工程學(xué)院 </p><p> 專(zhuān) 業(yè): 土木工程 </p><p> 學(xué)生姓名:
2、 學(xué) 號(hào): </p><p> 設(shè)計(jì)題目: 近期美國(guó)在鋼結(jié)構(gòu)和鋼筋混凝土結(jié)構(gòu) </p><p> 研究和設(shè)計(jì)方面的發(fā)展 </p><p> 指 導(dǎo) 教 師:
3、 </p><p> 專(zhuān)業(yè)負(fù)責(zé)人: </p><p> 起迄日期: </p><p> 設(shè)計(jì)地點(diǎn): </p>&
4、lt;p> 發(fā)任務(wù)書(shū)日期: 年 月 日</p><p> Recent Research and Design Developments in Steel and Composite Steel-concrete Structures in USA </p><p> The paper will conclude with a look toward the
5、 future of structural steel research.</p><p> 1. Research on steel bridges</p><p> The American Association of State Transportation and Highway Officials (AASTHO) is the authority that promulg
6、ates design standards for bridges in the US. In 1994 it has issued a new design specification which is a Limit States Design standard that is based on the principles of reliability theory. A great deal of work went into
7、the development of this code in the past decade, especially on calibration and on the probabilistic evaluation of the previous specification. The code is now being impleme</p><p> America has an aging steel
8、 bridge population and many problems arise from fatigue and corrosion. Fatigue studies on full-scale components of the Williamsburg Bridge in New York have recently been completed at Lehigh University. A probabilistic AA
9、STHO bridge evaluation regulation has been in effect since 1989, and it is employed to assess the future useful life of structures using rational methods that include field observation and measurement together with proba
10、bilistic analysis. Such an activit</p><p> In addition to fatigue and corrosion, the major danger to bridges is the possibility of earthquake induced damage. This also has spawned many research projects on
11、the repair and retrofit of steel superstructures and the supporting concrete piers. Many bridges in the country are being strengthened for earthquake resistance. One area that is receiving much research attention is th
12、e strengthening of concrete piers by "jacketing" them by sheets of high-performance reinforced plastic.</p><p> The previously described research deals mainly with the behavior of existing structu
13、res and the design of new bridges. However, there is also a vigorous activity on novel bridge systems. This research is centered on the application of high-performance steels for the design of innovative plate and box-gi
14、rder bridges, such as corrugated webs, combinations of open and closed shapes, and longer spans for truss bridges. It should be mentioned here that, in addition to work on steel bridges, there is </p><p> T
15、he final subject to be mentioned is the resurgence of studies of composite steel concrete horizontally curved steel girder bridges. A just completed project at the University of Minnesota monitored the stresses and the d
16、eflections in a skewed and curved bridge during all phases of construction, starting from the fabrication yard to the completed bridge.~ Excellent correlation was found to exist between the measured stresses and deforma
17、tions and the calculated values. The stresses and deflectio</p><p> From the discussion above it can be seen that even though there is no large expansion of the nation's highway and railroad system, the
18、re is extensive work going on in bridge research. The major challenge facing both the researcher and the transportation engineer is the maintenance of a healthy but aging system, seeing to its gradual replacement while k
19、eeping it safe and serviceable.</p><p> 2. Research on steel members and frames</p><p> There are many research studies on the strength and behavior of steel building structures. The most impo
20、rtant of these have to do with the behavior and design of steel structures under severe seismic events. This topic will be discussed later in this paper. The most significant trends of the non-seismic research are the fo
21、llowing:</p><p> "Advanced" methods of structural analysis and design are actively studied at many Universities, notably at Cornell, Purdue, Stanford, and Georgia Tech Universities. Such analysis
22、methods are meant to determine the load-deformation behavior of frames up to and beyond failure, including inelastic behavior, force redistribution, plastic hinge formation, second-order effects and frame instability. Wh
23、en these methods are fully operational, the structure will not have to undergo a member check, becaus</p><p> Another aspect of the frame behavior work is the study of the frames with semirigid joints. The
24、American Institute of Steel Construction (AISC) has published design methods for office use. Current research is concentrating on the behavior of such structures under seismic loading. It appears that it is possible to u
25、se such frames in some seismic situations, that is, frames under about 8 to 10 stories in height under moderate earthquake loads. The future of structures with semi-rigid frames looks </p><p> Research on m
26、ember behavior is concerned with studying the buckling and post buckling behavior of compact angle and wide-flange beam members by advanced commercial finite element programs. Such research is going back to examine the a
27、ssumptions made in the 1950s and 1960s when the plastic design compactness and bracing requirements were first formulated on a semi-empirical basis. The non-linear finite element computations permit the "re-testing
28、" of the old experiments and the performing of new c</p><p> 3. Research on cold-formed steel structures</p><p> Next to seismic work, the most active part of research in the US is on col
29、d-formed steel structures. The reason for this is that the supporting industry is expanding, especially in the area of individual family dwellings. As the cost of wood goes up, steel framed houses become more and more ec
30、onomical. The intellectual problems of thin-walled structures buckling in multiple modes under very large deformations have attracted some of the best minds in stability research. As a consequence, many new</p>&l
31、t;p> 4. Research on steel-concrete composite structures</p><p> Almost all structural steel bridges and buildings in the US are built with composite beams or girders. In contrast, very few columns are b
32、uilt as composite members. The area of composite Column research is very active presently to fill up the gap of technical information on the behavior of such members. The subject of steel tubes filled with high-strength
33、concrete is especially active. One of the aims of research performed by Hajjar at the University of Minnesota is to develop a fundamental unde</p><p> Other major research work concerns the behavior and des
34、ign of built-up composite wide-flange bridge girders under both positive and negative bending. This work is performed by Frank at the University of Texas at Austin and by White of Georgia Tech, and it involves extensive
35、studies of the buckling and post-buckling of thin stiffened webs. Already mentioned is the examination of the shakedown of composite bridges. The question to be answered is whether a composite bridge girder loses composi
36、te ac</p><p> 5. Research on connections</p><p> Connection research continues to interest researchers because of the great variety of joint types. The majority of the connection work is curre
37、ntly related to the seismic problems that will be discussed in the next section of this paper. The most interest in non-seismic connections is the characterization of the monotonic moment-rotation behavior of various typ
38、es of semi-rigid joints. </p><p> 6. Research on structures and connections subject to seismic forces</p><p> The most compelling driving force for the present structural steel research effort
39、 in the US was the January 17, 1994 earthquake in Northridge, California, North of Los Angeles. The major problem for steel structures was the extensive failure of prequalified welded rigid joints by brittle fracture. In
40、 over 150 buildings of one to 26 stories high there were over a thousand fractured joints. The buildings did not collapse, nor did they show any external signs of distress, and there were no human i</p><p>
41、 In this connection the flanges of the beams are welded to the flanges of the column by full-penetration butt welds. The webs are bolted to the beams and welded to the columns. The characteristic features of this type of
42、 connection are the backing bars at the bottom of the beam flange, and the cope-holes left open to facilitate the field welding of the beam flanges. Fractures occurred in the welds, in the beam flanges, and/or in the co
43、lumn flanges, sometimes penetrating into the webs.</p><p> Once the problem was discovered several large research projects were initiated at various university laboratories, such as The University of Califo
44、rnia at San Diego, the University of Washington in Seattle, the University of Texas at Austin, Lehigh University at Bethlehem, Pennsylvania, and at other places. The US Government under the leadership of the Federal Emer
45、gency Management Agency (FEMA) instituted a major national research effort. The needed work was deemed so extensive that no single re</p><p> (1) Structural Engineering Association of California.</p>
46、<p> (2) Applied Technology Council.</p><p> (3) California Universities for Research in Earthquake Engineering.</p><p> The first letters in the name of each agency were combined to fo
47、rm the acronym SAC, which is the name of the joint venture that manages the research. We shall read much from this agency as the results of the massive amounts of research performed under its aegis are being published in
48、 the next few years. </p><p> The goals of the program are to develop reliable, practical and cost-effective guidelines for the identification and inspection of at-risk steel moment frame buildings, the rep
49、air or upgrading of damaged buildings, the design of new construction, and the rehabilitation of undamaged buildings.~ As can be seen, the scope far exceeds the narrow look at the connections only. The first phase of the
50、 research was completed at the end of 1996, and its main aim was to arrive at interim guidelines so that</p><p> ~ A state-of-the-art assessment of knowledge on steel connections.</p><p> ~ A
51、survey of building damage.</p><p> ~ The evaluation of ground motion.</p><p> ~ Detailed building analyses and case studies.</p><p> ~ A preliminary experimental program.</p&g
52、t;<p> ~ Professional training and quality assurance programs.</p><p> ~ Publishing of the Interim Design Guidelines.</p><p> A number of reports were issued in this first phase of the
53、 work. A partial list of these is appended at the end of this paper.</p><p> During the first phase of the SAC project a series of full-scale connection tests under static and, occasionally, dynamic cycli
54、c tests were performed. Tests were of pre-Northridge-type connections (that is, connections as they existed at the time of the earthquake), of repaired and upgraded details, and of new recommended connection details.
55、 A schematic view of the testing program is illustrated in Fig. 2.2.2 Some recommended strategies for new design are schematically shown in Fig</p><p> Fig. 2.2.3 some recommended improvements in
56、the interim guidelines</p><p> The following possible causes, and their combinations, were found to have contributed to tile connection failures:</p><p> ~ Inadequate workmanship in the field
57、 welds.</p><p> ~ Insufficient notch-toughness of the weld metal.</p><p> ~ Stress raisers caused by the backing bars.</p><p> ~ Lack of complete fusion near the backing bar.<
58、/p><p> ~ Weld bead sizes were too big.</p><p> ~ Slag inclusion in the welds.</p><p> While many of the failures can be directly attributed to the welding and the material of the
59、joints, there are more serious questions relative to the structural system that had evolved over the years mainly based on economic considerations.' The structural system used relatively few rigid-frames of heavy m
60、embers that were designed to absorb the seismic forces for large parts of the structure. These few lateral-force resistant frames provide insufficient redundancy. More rigid-frames with smal</p><p> As can
61、be seen, there are many possible reasons for this massive failure rate, and there is blame to go around for everyone. No doubt, the discussion about why and how the joints failed will go on for many more years. The struc
62、tural system just did not measure up to demands that were more severe than expected. What should be kept in mind, however, is that no structure collapsed or caused even superficial nonstructural damage, and no person was
63、 injured or killed. In the strictest sense the struct</p><p> 7. Future directions of structural steel research and conclusion</p><p> The future holds many challenges for structural steel res
64、earch. The ongoing work necessitated by the two recent earthquakes that most affected conventional design methods, namely, the Northridge earthquake in the US and the Kobe earthquake in Japan, will continue well into
65、 the first decade of the next Century. It is very likely that future disasters of this type will bring yet other problems to the steel research community. There is a profound change in the philosophy of design for disast
66、ers</p><p> Another major challenge will be the emergence of many new materials such as high-performance concrete and plastic composite structures. Steel structures will continually have to face the problem
67、 of having to demonstrate viability in the marketplace. This can only be accomplished by more innovative research. Furthermore, the new comprehensive limit-states design codes which are being implemented worldwide, need
68、research to back up the assumptions used in the theories.</p><p> Specifically, the following list highlights some of the needed research in steel structures: </p><p> Systems reliability tool
69、s have been developed to a high degree of sophistication. These tools should be applied to the studies of bridge and building structures to define the optimal locations of monitoring instruments, to assess the condition
70、and the remaining life of structures, and to intelligently design economic repair and retrofit operations.New developments in instrumentation, data transfer and large-scale computation will enable researchers to know mor
71、e about the response of structures u</p><p> The state of knowledge about the strength of structures is well above the knowledge about serviceability and durability. Research is needed on detecting and prev
72、enting damage in service and from deterioration.</p><p> The areas of fatigue and fracture mechanics on the one hand, and the fields of structural stability on the other hand, should converge into a more Un
73、ified conceptual entity.</p><p> The problems resulting from the combination of inelastic stability and low-cycle fatigue in connections subject to severe cyclic loads due to seismic action will need to be
74、solved.</p><p> The performance of members, connections and connectors (e.g., shear connectors) under severe cyclic and dynamic loading requires extensive new research, including shakedown behavior. </p&
75、gt;<p> The list could go on, but one should never be too dogmatic about the future of such a highly creative activity as research. Nature, society and economics will provide sufficient challenges for the future
76、generation of structural engineers.</p><p><b> 中文翻譯</b></p><p> 近期美國(guó)在鋼結(jié)構(gòu)和鋼筋混凝土結(jié)構(gòu)研究和設(shè)計(jì)方面的發(fā)展 </p><p> 這篇文章將總結(jié)對(duì)鋼結(jié)構(gòu)的研究展望. </p><p> 1.鋼結(jié)構(gòu)橋梁的研究</p>&
77、lt;p> 美國(guó)國(guó)家運(yùn)輸和公路官員協(xié)會(huì)(AASTH0)是為美國(guó)橋梁發(fā)布設(shè)計(jì)標(biāo)準(zhǔn)的權(quán)威。1994年它發(fā)行了一個(gè)新的設(shè)計(jì)規(guī)范,這是一個(gè)限定性規(guī)范,它是以可靠性理論為基礎(chǔ)而建立的。在過(guò)去10年中的大量工作促 使了該規(guī)范的發(fā)展,尤其是在對(duì)原有規(guī)范的校準(zhǔn)和概率性評(píng)估方面。連同國(guó)際單位制的引入,目前該規(guī)范已經(jīng)應(yīng)用于各個(gè)設(shè)計(jì)事務(wù)所。這種新的設(shè)計(jì)方法還存在許多問(wèn)題,對(duì)橋梁擎體系統(tǒng)的可靠性研究還有很多新的課題。一個(gè)目前的課題就是研究并發(fā)展概率模型
78、、荷載系數(shù)以及合理的荷載組合法則,以處理活載和風(fēng)載;活載和地震;活載、風(fēng)和船只碰撞;船只碰撞、風(fēng)和沖刷作用這些共同作用對(duì)橋的影響。此外,還通過(guò)利用現(xiàn)代監(jiān)控工具,例如聲傳播技術(shù)和其他非破壞性測(cè)試方法,對(duì)橋體進(jìn)行現(xiàn)場(chǎng)測(cè)量。這些現(xiàn)場(chǎng)工作不僅需要并行的試驗(yàn)室研究相配合,還需要快速發(fā)展高科技數(shù)據(jù)傳輸方法。</p><p> 美國(guó)有數(shù)量眾多的年代久遠(yuǎn)的鋼橋,許多問(wèn)題是由疲累和腐蝕引起的。最近里海大學(xué)完成了對(duì)紐約Willia
79、msburg大橋足尺構(gòu)件的抗疲勞研究。AASTHO的橋體概率評(píng)估規(guī)定自1989年起開(kāi)始生效,它通過(guò)結(jié)合現(xiàn)場(chǎng)監(jiān)測(cè)和概率分析等合理方法對(duì)結(jié)構(gòu)未來(lái)使用時(shí)間進(jìn)行評(píng)估。由于許多問(wèn)題還未得到解決,這樣的活動(dòng)同樣促進(jìn)了進(jìn)一步的研究工作。其中之一是對(duì)混合結(jié)構(gòu)橋受剪連接部件強(qiáng)制破壞的研究。這項(xiàng)工作最近已經(jīng)在密蘇里大學(xué)完成了。 </p><p> 除了疲累和腐蝕,橋梁的主要危險(xiǎn)是地震引起的潛在的破壞。這也引發(fā)了對(duì)鋼橋上部構(gòu)造和
80、混凝土橋墩的修理和新式設(shè)計(jì)的諸多研究。國(guó)內(nèi)的許多橋梁正在進(jìn)行加固以抵抗地震。其中一個(gè)引起廣泛研究興趣的領(lǐng)域是用一層層的高性能加固塑料“圍裹”住混凝土柱,以增強(qiáng)其性能。</p><p> 前述的研究工作主要是針對(duì)現(xiàn)有結(jié)構(gòu)的性能和新橋梁的設(shè)計(jì)。然而,對(duì)新穎橋梁結(jié)構(gòu)的研究也充滿(mǎn)活力。這方面的研究主要圍繞將高強(qiáng)鋼應(yīng)用于新型板式支架和箱式支架橋梁,例如波形網(wǎng)格、開(kāi)口和封閉結(jié)合的形式及更長(zhǎng)跨度的桁架橋。在此必須指出,除了對(duì)
81、鋼橋的工作,還有一個(gè)非?;钴S的研究領(lǐng)域,那就是對(duì)超高強(qiáng)混凝土預(yù)應(yīng)力梁性能的研究。目前,對(duì)使用高性能塑性混合元件的小型橋梁的性能和設(shè)計(jì)也有廣泛研究。對(duì)使用鋼筋混凝土分段的連續(xù)橋體系,在正彎矩和負(fù)彎矩區(qū)域都得到了考慮。一些研究者發(fā)展了高強(qiáng)模型來(lái)模擬獨(dú)立板梁的三維非線(xiàn)性表現(xiàn),并且對(duì)這種結(jié)構(gòu)彎曲前及彎曲后的性能進(jìn)行了許多研究。此外還進(jìn)行了伴隨試驗(yàn),特別是針對(duì)高性能鋼建造的部件。一座實(shí)物大小使用這種鋼材的橋已經(jīng)被設(shè)計(jì)出來(lái),并且很快就將建造,然后進(jìn)
82、行交通荷載測(cè)試。對(duì)于大膨脹連接元件及高速公路標(biāo)志結(jié)構(gòu)的疲勞研究也在進(jìn)行中。</p><p> 最后要提到的是鋼筋混凝土水平彎曲鋼架橋研究的興起。明尼蘇達(dá)大學(xué)剛完成的一個(gè)項(xiàng)目,他們對(duì)一座歪斜彎曲的橋梁在施工各個(gè)階段——從預(yù)制工場(chǎng)到建造完畢——的應(yīng)力和變形進(jìn)行了監(jiān)控。測(cè)量到的應(yīng)力和變形與計(jì)算值吻合得相當(dāng)好。施工階段的應(yīng)力和變形相對(duì)很小,這表明施工過(guò)程對(duì)橋系統(tǒng)并不產(chǎn)生嚴(yán)重?fù)p壞。目前這座橋正在接受使用荷載試驗(yàn),通過(guò)滿(mǎn)載
83、沙礫的卡車(chē)施加荷載,這個(gè)過(guò)程要持續(xù)兩年,之后三將繼續(xù)對(duì)橋在使用荷載長(zhǎng)期作用下性能的變化進(jìn)行研究。一個(gè)主要的測(cè)試項(xiàng)目已經(jīng)在位于華盛頓的聯(lián)邦高速公路管理局試驗(yàn)室展開(kāi),一座1/2比例的彎曲混合梁橋目前正在測(cè)試以確定其極限狀態(tài)。這座試驗(yàn)橋被設(shè)計(jì)為自身的試驗(yàn)框架,測(cè)試后不同的部件可以被更換。在真實(shí)邊界條件和約束下進(jìn)行了各種柔性試驗(yàn)、剪切試驗(yàn)和彎剪共同作用試驗(yàn)。還通過(guò)有限元分析給這些試驗(yàn)建模,以檢查真實(shí)值和預(yù)測(cè)值的一致性。根據(jù)獲得的認(rèn)識(shí)來(lái)完善最終的
84、設(shè)計(jì)規(guī)范。這是目前美國(guó)最大的橋梁研究項(xiàng)目。</p><p> 從上述討論可以發(fā)現(xiàn),盡管全國(guó)的高速公路和鐵路系統(tǒng)并未大規(guī)模擴(kuò)張,但在橋梁領(lǐng)域卻開(kāi)展了廣泛研究。對(duì)于研究人員和交通工程師而言,主要的挑戰(zhàn)是對(duì)雖然老化但仍可正常使用的結(jié)構(gòu)的維護(hù),應(yīng)在保持其安全和可用性的前提下考慮逐步替換它們。</p><p> 2.鋼構(gòu)件和鋼框架結(jié)構(gòu)的研究</p><p> 目前有很多
85、關(guān)于鋼結(jié)構(gòu)建筑的強(qiáng)度和性能的研究。其中最重要的與劇烈地震時(shí)鋼結(jié)構(gòu)的性能和設(shè)計(jì)有關(guān)。這個(gè)話(huà)題將在接下來(lái)的內(nèi)容中討論。非地震領(lǐng)域中最重要的研究趨勢(shì)如下。 許多大學(xué)中都展開(kāi)了對(duì)結(jié)構(gòu)分析與設(shè)計(jì)中的“先進(jìn)”方法的積極研究,最著名的如康納爾大學(xué)、普度大學(xué)、斯坦福大學(xué)和喬治亞理工大學(xué)。這些分析方法是用于決定結(jié)構(gòu)在即將失效或失效后荷載——變形之間的性能,包括非彈性性狀、內(nèi)力重分布、塑性鉸的形成、二級(jí)影響和框架失穩(wěn)。當(dāng)這些方法完全運(yùn)作時(shí),結(jié)構(gòu)無(wú)需再
86、經(jīng)過(guò)元件校核,因?yàn)閷?duì)框架的有限元分析自動(dòng)完成了這個(gè)工作。除了對(duì)應(yīng)用這種高級(jí)分析的最佳方法的研究外,還有很多關(guān)于簡(jiǎn)化方法的研究工作,這些簡(jiǎn)化方法可以在設(shè)計(jì)事務(wù)所中輕易地應(yīng)用,同時(shí)還保持了復(fù)雜分析的優(yōu)勢(shì)。對(duì)于平面內(nèi)的性能,這種高級(jí)分析方法已發(fā)展得很完善,但對(duì)于考慮雙軸向彎曲或水平扭轉(zhuǎn)翹曲的情形還需進(jìn)一步研究。目前雖已取得了一定成果,但研究還遠(yuǎn)末完成。</p><p> 框架行為另外一方面的工作就是對(duì)有半剛性節(jié)點(diǎn)框架
87、的研究。美國(guó)鋼結(jié)構(gòu)學(xué)會(huì)(AISC)已經(jīng)發(fā)布了用于事務(wù)所的設(shè)計(jì)方法。目前的研究主要集中于地震荷載下這類(lèi)結(jié)構(gòu)的行為。有結(jié)果表明在地震情況下可以使用這類(lèi)框架,即8—10層中等地震荷載作用下的建筑。使用半剛性連接框架的結(jié)構(gòu)前景廣闊,這主要得益于像喬治亞理工大學(xué)的Leon及其他研究者的努力。</p><p> 對(duì)構(gòu)件性能的研究主要是應(yīng)用高級(jí)商業(yè)有限元軟件對(duì)密集角和寬翼緣梁構(gòu)件的分析。這種研究是對(duì)20世紀(jì)50年代和60年代
88、的一些假設(shè)的檢驗(yàn),那時(shí)塑性設(shè)計(jì)的簡(jiǎn)潔性和對(duì)支撐的要求是基于半經(jīng)驗(yàn)的基礎(chǔ)形成的。非線(xiàn)性有限元計(jì)算允許對(duì)已有試驗(yàn)進(jìn)行“重新測(cè)試”,并對(duì)新型元件和新型鋼種進(jìn)行新的計(jì)算機(jī)試驗(yàn)。喬治亞理工大學(xué)的懷特是這方面的先鋒之一。這篇文章后邊還將提及美國(guó)軍事學(xué)院和明尼蘇達(dá)大學(xué)的Earls目前進(jìn)行的研究工作。此類(lèi)研究的重要性在于:可以通過(guò)在計(jì)算機(jī)上進(jìn)行參數(shù)研究對(duì)極端屈服和變形現(xiàn)象進(jìn)行有效的檢驗(yàn)。計(jì)算機(jī)所得的結(jié)果可以通過(guò)原有試驗(yàn)和少量新試驗(yàn)來(lái)進(jìn)行校核。這些研究對(duì)
89、那些至今未得到完全解決的老問(wèn)題帶來(lái)了希望。</p><p> 3.對(duì)冷加工鋼結(jié)構(gòu)的研究</p><p> 在地震之后,目前美國(guó)最活躍的研究領(lǐng)域就是冷加工鋼結(jié)構(gòu)。原因是相關(guān)支柱產(chǎn)業(yè)正在擴(kuò)大,特別是在獨(dú)立家庭住宅領(lǐng)域。隨著木材價(jià)格上漲,鋼結(jié)構(gòu)房屋顯得越來(lái)越經(jīng)濟(jì)。多模式大變形情況時(shí)薄壁結(jié)構(gòu)的翹曲問(wèn)題引起了穩(wěn)定研究領(lǐng)域種的一些最優(yōu)秀人才的關(guān)注。由此,許多問(wèn)題得到了解決:如復(fù)雜單元增強(qiáng)結(jié)構(gòu),C型
90、和Z型梁的穩(wěn)定性及支撐,混合板,穿孔柱,穩(wěn)定焊接屋頂系統(tǒng),復(fù)雜形狀梁的穩(wěn)定性及支撐,使用高應(yīng)力高抗拉比鋼材的冷加工元件,及其他許多有趣的應(yīng)用。美國(guó)鋼鐵學(xué)會(huì)(AISl)在1996年發(fā)布了新的擴(kuò)張標(biāo)準(zhǔn),使得上述許多研究結(jié)果能被設(shè)計(jì)人員所利用。</p><p> 4.鋼筋混凝土混合結(jié)構(gòu)的研究</p><p> 美國(guó)幾乎所有的結(jié)構(gòu)性鋼橋和建筑都是使用梁或桁架混合建造的。相反,很少有柱是混合構(gòu)件
91、。當(dāng)前對(duì)混合柱的研究非常活躍,這將填補(bǔ)此類(lèi)構(gòu)件技術(shù)信息的空缺。鋼管中填充高強(qiáng)混凝土的課題研究尤其活躍。明尼蘇達(dá)大學(xué)的HaUar對(duì)此進(jìn)行了研究,他的一個(gè)研究目標(biāo)就是對(duì)單調(diào)荷載和循環(huán)荷載下混凝土填充柱和梁柱發(fā)生的各種相互作用建立一個(gè)基本的了解。另一個(gè)目標(biāo)是獲得對(duì)寬翼梁與混凝土填充管連接的性能的基本認(rèn)識(shí)。</p><p> 其他主要的研究工作涉及同時(shí)承受正負(fù)彎矩作用的寬翼橋桁架裝配的性能和設(shè)計(jì)。該工作由得克薩斯大學(xué)的
92、費(fèi)蘭克和喬治亞理工的懷特展開(kāi),工作包括了對(duì)薄壁加勁腹板翹曲和翹曲后深入廣泛的研究。前邊提到了對(duì)混合橋強(qiáng)制破壞的檢驗(yàn)。需要解決的問(wèn)題是在大于彈性極限荷載而小于塑性機(jī)理荷載的循環(huán)荷載作用下,是否橋桁架會(huì)失去混合作用的能力。一項(xiàng)新的研究已經(jīng)在明尼蘇達(dá)大學(xué)展開(kāi),它對(duì)由螺栓剪切連接的半剛性鋼架系統(tǒng)和混凝土剪力墻間的相互作用進(jìn)行了研究。</p><p><b> 5,對(duì)連接的研究</b></p&
93、gt;<p> 連接形式的多樣性使研究者對(duì)連接問(wèn)題的研究很感興趣。目前大部分的連接工作主要與本文下一節(jié)要討論的地震問(wèn)題相關(guān)。對(duì)非地震連接的最大興趣在于各類(lèi)型的半剛性連接單一彎曲扭轉(zhuǎn)特性的研究。</p><p> 6.地震力作用下結(jié)構(gòu)及其連接的研究</p><p> 目前美國(guó)對(duì)結(jié)構(gòu)性鋼研究所作的努力主要?jiǎng)恿?lái)源于1994年1月17日Northridge,加利福尼亞,洛杉磯
94、北部的地震。鋼結(jié)構(gòu)的主要問(wèn)題是滿(mǎn)足條件的剛性連接脆性破裂導(dǎo)致的結(jié)構(gòu)大規(guī)模失效。在超過(guò)150幢1~26層的建筑中有上千個(gè)破壞的連接部分。建筑物并未倒塌,它們也沒(méi)有出現(xiàn)任何外部龜裂,此外也沒(méi)有人員傷亡。一個(gè)典型的連接如圖2.2,1所示。</p><p> 在該連接中,梁翼緣通過(guò)完全對(duì)接焊透與柱焊接。腹板與梁拴接,與柱焊接。這類(lèi)連接的特征是梁翼緣底部的支撐鋼筋,以及為方便梁翼緣焊接施工留下的處理孔。出現(xiàn)在焊縫中、梁翼
95、緣中及柱翼緣上的裂縫有時(shí)會(huì)進(jìn)入腹板。</p><p> 這個(gè)問(wèn)題被發(fā)現(xiàn)后,許多大型研究項(xiàng)目在各大學(xué)試驗(yàn)室展開(kāi),如加利福尼亞大學(xué)的圣·地亞哥分校、西雅圖的華盛頓大學(xué)、奧斯汀的得克薩斯大學(xué)、賓夕法尼亞的里海大學(xué)伯利恒分校,等等。在聯(lián)邦應(yīng)急管理局(FEMA)指導(dǎo)下美國(guó)政府展開(kāi)了一個(gè)全國(guó)性的主要研究工作。這項(xiàng)工作被認(rèn)為是非常龐大,沒(méi)有任何獨(dú)立研究機(jī)構(gòu)能夠單獨(dú)完成。從而三個(gè)加利福尼亞團(tuán)體成立了一個(gè)協(xié)會(huì)以管理這項(xiàng)
96、工作,它們是:</p><p> (1)加利福尼亞結(jié)構(gòu)工程協(xié)會(huì)。</p><p> (2)應(yīng)用科技理事會(huì)。</p><p> (3)加利福尼亞大學(xué)地震工程研究所。</p><p> 三個(gè)機(jī)構(gòu)名稱(chēng)的首字母形成了縮寫(xiě)詞SAC,這就是該聯(lián)合協(xié)會(huì)的名稱(chēng)。在該協(xié)會(huì)的支持下,大量的研究工作得以開(kāi)展,并且在接下來(lái)的幾年中發(fā)表了很多成果。</p
97、><p> 這個(gè)項(xiàng)目的目標(biāo)是建立可靠、可行及經(jīng)濟(jì)的指導(dǎo)原則,以識(shí)別和檢測(cè)危險(xiǎn)鋼結(jié)構(gòu)建筑,維修和升級(jí)破壞建筑,設(shè)計(jì)新建筑結(jié)構(gòu),對(duì)未破壞建筑的翻新。很明顯,它的影響范圍遠(yuǎn)遠(yuǎn)超出了連接問(wèn)題。</p><p> 研究的第一階段在1996年底完成,它的主要目標(biāo)是達(dá)成一個(gè)過(guò)渡性的指導(dǎo)原則,以使設(shè)計(jì)工作得以繼續(xù)。它包括了以下內(nèi)容:</p><p> ·在目前技術(shù)水平下
98、對(duì)鋼連接知識(shí)的評(píng)估。</p><p> ·對(duì)建筑破壞的調(diào)查。</p><p> ·對(duì)地面運(yùn)動(dòng)的評(píng)估。</p><p> ·詳細(xì)的建筑分析和案例研究。</p><p><b> ·初步試驗(yàn)項(xiàng)目。</b></p><p> ·專(zhuān)業(yè)訓(xùn)練和質(zhì)量保
99、證項(xiàng)目。</p><p> ·《臨時(shí)設(shè)計(jì)指導(dǎo)原則》的發(fā)表。</p><p> 在第一階段工作中發(fā)表了許多報(bào)告。這篇文章末尾列舉了其中的一部分。</p><p> 在SAC項(xiàng)目的第一階段,進(jìn)行了一系列靜載或有時(shí)循環(huán)動(dòng)載作用下的足尺連接試驗(yàn)。有關(guān)于先Northridge型的連接(即地震發(fā)生時(shí)已存在的連接),有已修復(fù)和升級(jí)的部件,還有新的建議使用的連接部件
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯-近期美國(guó)在鋼結(jié)構(gòu)和鋼筋混凝土結(jié)構(gòu)研究和設(shè)計(jì)方面的發(fā)展
- 土木工程外文翻譯---抗震鋼筋混凝土結(jié)構(gòu)設(shè)計(jì)原則
- 土木工程外文文獻(xiàn)翻譯---鋼筋混凝土
- 土木工程專(zhuān)業(yè)畢業(yè)設(shè)計(jì)外文翻譯--鋼筋混凝土結(jié)構(gòu)中鋼筋連接綜述
- 土木工程類(lèi)外文文獻(xiàn)翻譯---鋼筋混凝土
- 土木工程畢業(yè)設(shè)計(jì)外文文獻(xiàn)翻譯--鋼筋混凝土
- 土木工程外文資料翻譯--混凝土與鋼筋混凝土的特性
- 土木工程外文資料翻譯---混凝土與鋼筋混凝土的特性
- 土木工程畢業(yè)設(shè)計(jì)----商場(chǎng)鋼筋混凝土框架結(jié)構(gòu)
- 土木工程 建筑外文翻譯 ----鋼筋混凝土及土方工程簡(jiǎn)介
- 土木工程畢業(yè)設(shè)計(jì)--八層現(xiàn)澆鋼筋混凝土框架結(jié)構(gòu)(含外文翻譯)
- 土木工程外文翻譯---高層結(jié)構(gòu)與鋼結(jié)構(gòu)
- 土木工程鋼筋混凝土施工技術(shù)
- 土木工程抗震第5章 鋼筋混凝土結(jié)構(gòu)的房屋抗震設(shè)計(jì)
- 關(guān)于土木工程鋼筋混凝土框架結(jié)構(gòu)設(shè)計(jì)要點(diǎn)分析
- [雙語(yǔ)翻譯]土木工程外文翻譯--土木工程中cfrp鋼結(jié)構(gòu)加固的幾個(gè)方面(中英文)
- 土木工程外文翻譯--混凝土結(jié)構(gòu)配筋設(shè)計(jì)
- 土木工程外文翻譯---混凝土結(jié)構(gòu)配筋設(shè)計(jì)
- 土木工程外文翻譯--隨時(shí)間變化的鋼筋混凝土阻力分析.pdf
- 土木工程畢業(yè)設(shè)計(jì)--八層鋼筋混凝土框架結(jié)構(gòu)體系
評(píng)論
0/150
提交評(píng)論