2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、<p>  Evaluation of Material Design Limits for TBM Applications</p><p>  Abstract-The aim of the work presented is, firstly, an evaluation of existing design rules considered for austenitic steels exhib

2、iting hardening cycle by cycle contrary to the reduced activation ferritic-martensitic steels (RAFM), which soften under cyclic loading. Secondly, it is a definition of the range of operation temperatures and loads f

3、or the current design of the test blanket module (TBM). Results of cycling tests of the EUROFER 97 performed by J. Aktaa & R. Schmitt Ill have been the</p><p>  Keywords-test blanket module, reduced acti

4、vation ferritic-martensitic steel, EUROFER 97, structural design code, cyclic softening, stress categoriuation, ratcheting, high-temperature design rules </p><p>  TBM材料設(shè)計極限的評估</p><p>  摘要,

5、這項(xiàng)工作的目的提出的是,第一,對現(xiàn)有的參展硬化奧氏體鋼和軟化的馬氏體鋼的現(xiàn)有規(guī)則的評價。其次,這是一個對工作溫度和試驗(yàn)包層模塊(隧道掘進(jìn)機(jī))目前的設(shè)計負(fù)荷范圍的定義。對由J. Aktaa&河施密特表現(xiàn)欠佳的歐洲鋼鐵聯(lián)盟97單車試驗(yàn)的結(jié)果已使使用 來調(diào)整有限元中結(jié)合自己的非線性各向同性運(yùn)動強(qiáng)化模型所需的材料參數(shù)。此外,粘塑性材料模型考慮物質(zhì)損害病患者實(shí)施的一種有限元中的用戶材料(UMAT)最近已申請模擬,結(jié)果也被使用的材料獲得上述模型進(jìn)行

6、了比較。</p><p>  關(guān)鍵詞 試驗(yàn)包層模塊,減少活化鐵素體,馬氏體鋼,歐洲鋼鐵聯(lián)盟97,結(jié)構(gòu)設(shè)計規(guī)范,循環(huán)軟化,強(qiáng)調(diào)準(zhǔn)則,棘輪,高溫設(shè)計規(guī)則</p><p>  I. INTRODUCTION</p><p>  This work is a part of the development activity of the ITER test blanket

7、module (TBM).A determination of high-temperature design rules considering the creep/fatigue is the aim of the work. According to the present-day vision, the TBM should be manufactured from a reduced-activation ferritic-m

8、artensitic (RAFM) steel EUROFER 97, which exhibits severe softening during cyclic loading contrary to usual austenitic steels. This abnormal behavior leads definitively to a necessity to revise a traditional</p>&

9、lt;p>  Such a revision requests, firstly, a wide experimental data base and, secondly, an advanced material model being able to describe a realistic behavior of a material. The fulfillment of both these requirements a

10、s well as acute needs of blanket designers in renewed rules forn thus positive initial conditions for the appearance of the work presented.</p><p><b>  一,導(dǎo)言</b></p><p>  這項(xiàng)工作是對ITER試驗(yàn)

11、包層模塊的開發(fā)活動的一部分(隧道掘進(jìn)機(jī))。甲高溫設(shè)計規(guī)則考慮蠕變/疲勞是工作目標(biāo)的決心。根據(jù)今天的理想,隧道掘進(jìn)機(jī)制造的,應(yīng)降低激活素體,馬氏體(RAFM)鋼歐洲鋼鐵聯(lián)盟97,該展覽在循環(huán)荷載違背一般奧氏體鋼嚴(yán)重軟化。這種不正常的行為導(dǎo)致最終以必要的修改等一些著名的3條重要釤傳統(tǒng)的設(shè)計規(guī)則的制定。</p><p>  這種修訂的要求,首先,基礎(chǔ)廣泛的實(shí)驗(yàn)數(shù)據(jù),其次是一種先進(jìn)的材料模型能夠描述一個現(xiàn)實(shí)的物質(zhì)的行為。

12、上述兩項(xiàng)要求的實(shí)現(xiàn),以及在新的規(guī)則毯福爾設(shè)計師緊迫需要為工作狀態(tài),從而提出了積極的初始條件。</p><p>  II.ADJUSTMENT OF MATERIAL PARAMETERS</p><p>  To simulate the actual behavior of the TBM under cyclic thermal and mechanical loading, expe

13、rimental data of corresponding cyclic tests are needed. Such data stemming from a life time study of the EUROFER 97at 450(723K),550(823K) and 650 (923K) performed by J. Aktaa & R.</p><p>  Schmitt [1] as

14、 well as at the room temperature (RT) provided by M. Weick [2] have been used to adjust material parameters required for an ABAQUS-own non-linear isotropic-kinematic hardening model [3]. This model is able to account e.g

15、. for the Bauschinger effect, a cyclic hardening with plastic shakedown as well as for a ratcheting. A description of the material model is given in [3] and lies outside the paper. The determined values for the parameter

16、s C, y, Q and b specified also in [3] are coll</p><p>  TABLE I. KINEMATIC HARDENING: THE FITTED PARAMETER C FOR</p><p>  DIFFERENT TEMPERATURES; THE 2ID PARAMETER r =1150</p><p>

17、  TABLE II. ISOTROPIC HARDENING: THE FITTED PARAMETES Q AND b</p><p>  FOR DIFFERENT TEMPERATURES.</p><p>  II.ADJUSTMENT材料參數(shù)</p><p>  為了模擬循環(huán)下熱和機(jī)械載荷的隧道掘進(jìn)機(jī)的實(shí)際行為,相應(yīng)的循環(huán)測試的實(shí)驗(yàn)數(shù)據(jù)是必要的。從生命的

18、時間研究產(chǎn)生的數(shù)據(jù),歐洲鋼鐵聯(lián)盟97at 450(723K),550(823K)和650(923K)由J. Aktaa&R的表現(xiàn)</p><p>  施密特[1],以及在室內(nèi)溫度(RT)由M.韋克提供[2]被用來調(diào)整一Abaqus中所需的非線性各向同性,運(yùn)動強(qiáng)化模型[3材料參數(shù)]。該模型能夠考慮的包辛格效應(yīng),例如,一個塑料循環(huán)硬化安定以及一步步。</p><p>  甲材料模型的描述給出了

19、[3]和外部的文件所在。為參數(shù)C,Y和Q和規(guī)定也在B的測定值[3]在標(biāo)簽收集。第一和第二。</p><p>  表一 動硬化:擬合C的參數(shù)不同溫度下的2ID參數(shù)r = 1150</p><p>  表二 各向同性硬化:擬合PARAMETES Q及同一的不同溫度。</p><p>  III. DETERMINATION OF

20、 THE ELASTIC LIMIT</p><p>  Finite Element Model</p><p>  To verify the material model described above, a 2D model of a quarter of the TBM has been created according to the current design and me

21、shed using PATRAN. The model is shown in fig. 1 together with mechanical constraints. The only external mechanical load in the non-accident operating mode is the hydrostatic pressure of 80 bar = 8 MPa in the cooling chan

22、nels.</p><p>  For those simulations where thermal stresses occur, ABAQUS promotes a so called generalized plane strain element formulation, which accounts for an elongation in the out-of-plane direction and

23、 thus avoids enormously high non-physical out-of-plane stresses. The 8-noded generalized plane strain elements CPEG8 have been used here.</p><p>  B. Thermal Simulation</p><p>  During the opera

24、ting mode, it should be accounted for a heat flux of 250 up to 500 kW/m2 (peak) on the plasma-facing side as well as a heat flux of 60 kW/m2 and of 35 kW/m2 on the vertical and horizontal interior, respectively, due to b

25、reeder units, see fig. 2. For the reason of simplicity, boundary conditions depicted in fig. 2 have been considered in the simulations.</p><p>  C. Mechanical Simulations using various Plasma Heating and Pre

26、ssure in Cooling Channels (no cycling)</p><p>  By variation of both the temperature in cooling channels and the plasma heating, a critical pressure has been determined. The critical pressure is defined as t

27、he minimum pressure causing an inelastic deformation after the 1st heating i.e. After the 1/2 of the 1st cycle.</p><p>  The critical pressure is shown in fig. 3 in dependence on the plasma heating and the t

28、emperature in the cooling channels Tcc. </p><p>  Evidently, the critical pressure is strongly dependent on the temperature in the cooling channels and relatively slightly on the plasma heating up to 450 - 5

29、00 kW/m2 approximately. </p><p>  Increasing plasma heating takes however a leading influence on the critical pressure whereas the temperature in the cooling channels plays a decreasing role and, finally, pl

30、astic deformation occurs for all Tec without pressure due to the temperature gradient alone if the plasma heating reaches 1000kW/M2. For this heating, the plastic deformation is localized in a narrow band along the plasm

31、a-facing side, see fig. 4 (on the left). A high pressure causes an additional plastic deformation located i</p><p><b>  三。測定彈性極限</b></p><p><b>  A有限元模型</b></p><

32、;p>  要驗(yàn)證上述材料模型,一個季度的隧道掘進(jìn)機(jī)二維模型已經(jīng)建立按目前的設(shè)計和網(wǎng)格使用PATRAN。該模型如圖。 1與機(jī)械的限制。唯一的外部機(jī)械負(fù)載的非事故工作模式的80欄= 8兆帕斯卡的冷卻管道水壓。</p><p>  對于那些在熱應(yīng)力模擬發(fā)生,Abaqus中推動了所謂的廣義平面應(yīng)變元素提法,爭取在外的平面方向,從而避免了昂貴的,非物質(zhì)的出平面應(yīng)力伸長帳戶。 8 - noded廣義平面應(yīng)變要素CPEG

33、8使用了這里。</p><p><b>  B.熱模擬</b></p><p>  在運(yùn)營模式,應(yīng)該是占了高達(dá)500 kW/m2(峰值)的等離子所面臨的方以及垂直60 kW/m2熱通量和35 kW/m2 250熱流和橫向內(nèi)部,分別由于育種單位,見圖。 2。為了簡單的原因,邊界條件描繪圖。 2,被認(rèn)為是模擬的。</p><p>  C長使用各種機(jī)

34、械模擬等離子加熱和冷卻通道(無單車壓力)</p><p>  通過雙方的冷卻渠道和等離子體加熱,一個關(guān)鍵的壓力已定的溫度變化。臨界壓力被定義為最小壓力造成的經(jīng)過后,1 /第1周期2第一加熱即一個彈性變形。</p><p>  臨界壓力如圖。 3對等離子體加熱的依賴和在冷卻通道部隊(duì)派遣國的溫度。</p><p>  顯然,臨界壓力是強(qiáng)烈地依賴于在冷卻通道的溫度和相對稍

35、微加熱到450等離子 - 500 kW/m2左右。等離子體加熱時間增加但就,而在冷卻通道的溫度,臨界壓力的影響起著主導(dǎo)作用,減少由于沒有壓力,溫度梯度,如果僅達(dá)到1000kW/M2等離子體加熱,最后,塑性變形對所有過渡時期發(fā)生。為此暖氣,</p><p>  塑性變形是定位于沿等離子體窄帶面向方面,見圖。 4(左邊)。高壓導(dǎo)致額外的塑性變形,在左底部或左側(cè)第一或第二冷卻渠道以外的角落,如果在銷售渠道中的壓力達(dá)到臨

36、界值以上討論,見圖。 4(右側(cè))。在變形的幅度是高于熱塑性應(yīng)變幅度。</p><p>  IV.SIMULATIONS OF THE CYCLIC BEHAVIOR OF TBM</p><p>  The cyclic behavior of the TBM model has been studied using both the ABAQUS-own material model d

37、escribed above and the visco-plastic material model considering damage [1] implemented recently by J. Aktaa. Thereby, the following load case has been used: Tcc = 600 (873K); the plasma heating 750 kW/m2 and the coolant

38、pressure P = 50 MPa (500 bar). It was assumed on the basis of the study reported in the previous section that such abnormal high loads should cause an essential plastic deformation.</p><p>  Each cycle consi

39、sts of four steps: (1) a heating and application of the pressure, 30 sec; (2) a holding at the high temperature (HT) 400 sec, (3) a cooling to the RT, 100 sec and, finally (4) a holding at the RT 1400 sec. Note that the

40、steps (2) and (4) are not relevant for the ABAQUS-own time-independent material model. </p><p>  It was possible to simulate 300 cycles with the ABAQUS-own model and only 100 cycles with the UMAT because of

41、the high cpu time needed. The results have been generated in a table format along the path AB,CD,GF and KL depicted in fig. 1. A follow-up examination has shown that the highest plastic strain in the model occurs

42、near the point L of the path KL as in fig. 4 (on the right). A change of the maximum equivalent plastic strain near the point L within the first 100 cycles is depicted in</p><p>  The application of the UMAT

43、 leads evidently to considerably higher plastic strains due to the creep and damage of the material. Note that the values of the variable PEMAG (the magnitude of the plastic strain) after the It heating are quite similar

44、 for both models, see fig. 5. The behavior of the maximum von Mises stress along the path KL for the first 10 cycles is illustrated in fig. 6 for both material models.</p><p>  For the same reason, the von M

45、ises stress obtained using the UMAT is considerably less than in the case if the ABAQUS-own model is applied. Note that the values of the von Mises stress are quite identical for both models after the Ist heating, see al

46、so fig. 6. The ABAQUS-own model also leads to a material softening, which is however not as distinctive (11.5 MPa/300 cycles) as in the case of the UtM4AT. </p><p>  Only more conservative results obtained u

47、nder an application of the UM\AT are used below for the verification of some design rules. As follows from the curve depicted in fig 5, the magnitude of the plastic strain seems to reach a saturated value. However, to ge

48、t a definite answer, more cycles (say 300) should be simulated.</p><p>  IV.SIMULATIONS的隧道掘進(jìn)機(jī)的循環(huán)行為</p><p>  隧道掘進(jìn)機(jī)的循環(huán)行為模式進(jìn)行了研究同時使用Abaqus中,自己的材料模型上面所述的粘塑性材料模型考慮損害[1]實(shí)施最近由J. Aktaa。因此,下面的負(fù)荷情況下使用了:部隊(duì)

49、派遣國= 600(873K)的750 kW/m2等離子體加熱和冷卻劑的壓力P = 50兆帕(500桿)。</p><p>  正是基于這項(xiàng)研究報告的基礎(chǔ)上假設(shè)上一節(jié)中,這種不正常的高負(fù)荷,應(yīng)引起必要的塑性變形。</p><p>  每個周期包括:四個步驟(1)加熱和壓力,30秒應(yīng)用;(2)在高溫(羥色胺)400秒,(3)持有冷卻的RT,100秒,最后(4)持有的逆轉(zhuǎn)錄1400秒。請注意,步

50、驟(2)及(4)不為Abaqus中,自己的時間,獨(dú)立的材料模型相關(guān)。</p><p>  噸是可能的模擬與Abaqus中,自己的模式,并與因高CPU時間UMAT只有100個循環(huán)周期所需的300。結(jié)果已經(jīng)產(chǎn)生,沿著抗體,光盤,綠,吉隆坡圖所示的路徑表的格式。 1。一個后續(xù)檢查表明,該模型中的塑性應(yīng)變最高點(diǎn)附近發(fā)生的路徑吉隆坡L為圖。</p><p>  4(右側(cè))。阿最高點(diǎn)附近的等效塑性應(yīng)變

51、蜇頭100內(nèi)循環(huán)的變化是描繪圖。 5兩種材料的模型。一份詳細(xì)的調(diào)查顯示一個在Abaqus中等效塑性應(yīng)變的情況幾乎線性增加自己的材料模型。但是,這一增長介乎1.355E - 3和1.366E - 300的第一個周期3。</p><p>  該UMAT導(dǎo)致明顯的應(yīng)用大大提高塑性應(yīng)變由于蠕變和物質(zhì)損失。請注意,PEMAG變量的值(即塑性應(yīng)變后,它的規(guī)模)加熱十分相似,這兩個模型,見圖。 5。</p>&l

52、t;p>  在最高馮米塞斯沿的前10次循環(huán)的道路吉隆坡強(qiáng)調(diào)行為圖所示。 6兩種材料模型。</p><p>  出于同樣的原因,馮米塞斯應(yīng)力使用UMAT得到大大低于案件,如果Abaqus中,自己的模式應(yīng)用。請注意,馮米塞斯應(yīng)力值是相當(dāng)后IST的加熱兩種型號相同,也見圖。 6。在Abaqus中,自己的模式也導(dǎo)致材料軟化,但它作為獨(dú)特(11沒有。</p><p>  5 MPa/300周期

53、)為在UtM4AT情況。</p><p>  只有在一個比較保守的密歇根大學(xué)\取得的成果在應(yīng)用使用下面的一些設(shè)計規(guī)則的驗(yàn)證。由圖5所示的曲線如下,對塑性應(yīng)變程度似乎達(dá)到飽和值。但是,為了得到一個明確的答案,更多的周期(例如300)應(yīng)模擬。</p><p>  V.VERIFICATION OF DESIGN RULES</p><p>  The aim is no

54、w to compare the results discussed above with a prediction of some design rules based on linear-elastic simulations. To apply the design rules, Smt, the minimum of Sm and St should be evaluated. Thereby, Sm is the lowest

55、 stress intensity at a given temperature among the time-independent strength quantities and St is a temperature and time-dependent stress intensity limit, see e.g. ASME code design rules [3]. </p><p>  Calcu

56、lation ofS m</p><p>  The available Sm and Smt values do not consider a change of the tensile strength and yield stress cycle by cycle. This change can be however taken into account if Sm is calculated on th

57、e basis of the experimental data reported by J. Aktaa and R. Schnitt in [1]. Thereby, the maximum achieved tensile stress must be used here for calculations instead of the ultimate tensile strength. To obtain the needed

58、tensile strengths, tensile tests should be performed after e.g. 10, 20 etc. Cycles.</p><p>  The new-calculated in such manner value is represented in fig. 7 together with the Smt values from the DEMO SDC. I

59、t was assumed that each cycle is 1930 sec = 0,54 h long. To avoid a misunderstanding, the value has been labelled as S*m. Note that any stress leads to a plastic collapse already after 200 cycles at 650 (923K). As follow

60、s from the diagrams in fig. 7, the DEMO SDC provides too high values of Sm/Smt. For instance, values proposed for 650(923K) are valid for 550 (823K). On the other han</p><p>  B. Stress Categorization</p&

61、gt;<p>  To separate primary and secondary stresses, linear-elastic simulations have been performed for three load cases: thermal and mechanical loads acting together and separated. A comparison of the results obt

62、ained allows to recognize that the coolant pressure partially compensates the influence of the plasma heating.</p><p>  Results of these simulations have been then linearized automatically along the four pat

63、hs discussed above using the corresponding option of the ABAQUS VIEWER. Note that the ABAQUS VIEWER rotates axes during the automatic linearization procedure. For instance, the x axis is directed along the path chosen. &

64、lt;/p><p>  C. Application ofDesign Rules</p><p>  Now, the following design rules (elastic route) can be checked:</p><p>  * rules for prevention of an immediate plastic collapse and

65、a plastic instability (M-type damage) P < S. </p><p>  Pm +Pb < KSm</p><p>  * the rule for prevention of a progressive deformation or a ratcheting (C-type damage)</p>

66、<p>  Pm+ Pb+ Q < 3 S,m </p><p>  Thereby, K is the bending shape factor, which ranges in general between 1.0 and 2.0. Here, K = 1.5. The more conservative rule accounting for a possible embrittlem

67、ent caused by irradiation is not considered here since the material tested is unirradiated. Besides this factor, the following conventional notations are used here: Pm and Pb denote the primary membrane and bending stres

68、ses respectively, Q is the secondary (thermal) stress.</p><p>  The maximum values required for an evaluation of (1) and (2) are collected in tab. III. An easy comparison allows to see that none of the three

69、 criteria is fulfilled even for the Smt value stemming from DEMO SDC at Te = 600(873K). If the Sm value at the average temperature along the path (approx.625 or 899K) is considered, the difference becomes more essential.

70、 The S m value for this temperature is however out of any competition.</p><p>  Thus, the chosen design rules predict (a) the plastic collapse and plastic instability as well as (b) the accumulation of the p

71、lastic deformation. The simulation results under application of the visco-plastic material model considering damage seems to show rather a shakedown. However, as mentioned above, to obtain a more definite result, more cy

72、cles should be simulated and, furthermore, additional load cases should be investigated.</p><p><b>  五,驗(yàn)證設(shè)計規(guī)則</b></p><p>  在現(xiàn)在的目標(biāo)是比較討論了關(guān)于線性彈性模擬的一些設(shè)計規(guī)則上述預(yù)測的結(jié)果。要應(yīng)用的設(shè)計規(guī)則,基板,最低的釤和圣應(yīng)進(jìn)行評估。

73、從而,SM是在一特定時間中的溫度獨(dú)立力量的數(shù)量和圣是一個溫度和時間依賴性應(yīng)力強(qiáng)度極限應(yīng)力強(qiáng)度最低,例如見ASME規(guī)范設(shè)計規(guī)則[3]。</p><p>  A,OFS公司米計算</p><p>  可用釤和SMT值不考慮的抗拉強(qiáng)度和屈服應(yīng)力循環(huán)周期變化。這種變化可以但考慮到如果SM是對實(shí)驗(yàn)數(shù)據(jù)的計算由J. Aktaa和R. Schnitt報道[1]。從而實(shí)現(xiàn)最大拉應(yīng)力必須使用這里不是極限抗拉

74、強(qiáng)度計算。為了獲得所需的拉伸強(qiáng)度,拉伸試驗(yàn)后,應(yīng)該進(jìn)行,例如10,20等周期。</p><p>  新的計算的價值的方式是在圖的代表。 7聯(lián)同演示南區(qū)區(qū)議會的SMT值。據(jù)推斷,每個周期為1930秒= 0,54 h長。為了避免誤解,該值已被標(biāo)記為S *米請注意,任何壓力導(dǎo)致崩潰的塑料在650已經(jīng)200次循環(huán)后(923K)。如下圖,從圖表。 7,南區(qū)區(qū)議會提供的演示值過高釤/回流焊。例如,提出了價值650(923K)

75、的有效期為550(823K)。另一方面,米的S *計算值也可以增強(qiáng)實(shí)力,如果最終將確定正確。</p><p><b>  B,二應(yīng)力分類</b></p><p>  分開小學(xué)和中學(xué)強(qiáng)調(diào),線彈性模擬經(jīng)歷了3個工況進(jìn)行:熱和機(jī)械載荷共同行動和分離。阿所獲得的結(jié)果進(jìn)行比較允許承認(rèn),冷卻液壓力部分彌補(bǔ)了等離子加熱的影響。</p><p>  這些模擬的

76、結(jié)果,然后一直沿著上述線性自動使用該瀏覽器相應(yīng)選項(xiàng)Abaqus中討論了四種途徑。請注意,Abaqus中觀眾在旋轉(zhuǎn)過程自動線性軸。例如,X軸是針對沿著選擇的道路。</p><p>  C.應(yīng)用ofDesign規(guī)則</p><p>  現(xiàn)在,下面的設(shè)計規(guī)則(彈性線)可以檢查:</p><p>  *規(guī)則立即塑料的災(zāi)變防治和塑料不穩(wěn)定(M型損傷)</p>&

77、lt;p><b>  P < S. </b></p><p>  Pm +Pb < KSm </p><p>  *為建立一個漸進(jìn)變形預(yù)防規(guī)則或棘輪(C型損傷)</p><p>  Pm+ Pb+ Q < 3 S,m </p><p>  因此,K是彎曲的形狀因素,一般范圍在1.0和2.0。在這里

78、,鉀= 1.5。輻照對可能引起氫脆較為保守的會計規(guī)則是這里不考慮,因?yàn)檫@些材料的輻照考驗(yàn)。除了這個因素,</p><p>  下面的傳統(tǒng)符號是用在這里:Pm和鉛的主要記為膜和彎曲應(yīng)力分別Q是次要(熱)的壓力。</p><p>  所需的最高值為1(1)和(2)在標(biāo)簽收集的評價。三。一個簡單的比較可以看出,這三個條件沒有得到滿足,即使從演示的SMT南區(qū)區(qū)議會產(chǎn)生于德= 600(873K值)。

79、如果在路徑上的平均溫度釤值(approx.625或899K)被認(rèn)為是,差距變得更加重要。</p><p>  此溫度小中值不過,出于任何競爭。</p><p>  因此,選定的設(shè)計規(guī)則預(yù)測(1)塑料崩潰和塑料的不穩(wěn)定以及(二)的塑性變形積累。粘下的應(yīng)用程序的模擬結(jié)果,塑料材料模型考慮的損害似乎表明而是一個安定。然而,如上所述,以獲得一個較為明確的結(jié)果,更多的周期應(yīng)模擬,</p>

80、<p>  此外,額外的負(fù)載案件應(yīng)該進(jìn)行調(diào)查。</p><p>  VI. CONCLUSION AND OUTLOOKS</p><p>  In the present work, material parameters required for the non-linear kinematic-isotropic hardening ABAQUS-own materia

81、l model have been newly determined. These parameters have been then used to find out the coolant pressure causing a plastic deformation as a function of the temperature in the cooling channels and the plasma heating. <

82、;/p><p>  Furthermore, the cyclic behavior of the TBM has been simulated using both the ABAQUS-own material model and a visco-plastic material model considering material damage. </p><p>  On the ot

83、her hand, some important design rules have been applied and their predictions have been compared with the results of the cyclic simulations. It turned thereby out that the criterions are not fulfilled even if the convent

84、ional value of Smt is used. The newly calculated value S*m introduced similar to Sm and accounting for the softening of the EUROFER 97 cycle by cycle leads to a larger gap between the target and actual results.</p>

85、<p>  The results of the cyclic simulations exhibit neither the plastic collapse nor the ratcheting after the first 100 cycles. This discrepancy could mean that the criterions are possibly too conservative for EU

86、ROFER 97 and new design rules should be considered. The suggestion requires however a further in-depth study including a verification of all (elastic and elastic-plastic) design rules preventing both the M-type and C-typ

87、e damage, a consideration of the irradiation, the hydrogen effect and cor</p><p>  ACKNOWLEDGMENT</p><p>  We are grateful for the experimental data at the room temperature kindly given by Dr.-I

88、ng. M. Weick. We would also thank Mrs. G. Rizzy for her help in performing the FE simulations. The presented work has been partly supported by the European Fusion Development Agreement (EFDA). </p><p>  REFE

89、RENCES</p><p>  [1] J. Aktaa, R. Schmitt, scientific report FZKA 6931, Forschungszentrum Karlsruhe GmbH, 2004</p><p>  [2] M. Weick, private communication, Forschungszentrum Karlsruhe GmbH, 200

90、4</p><p>  [3] ABAQUS/Standard User's Manual, Vol. II, Ch. 11.2.2</p><p>  [4] ASME Boiler and Pressure vessel code: Section III, Division 1 -Subsection NH</p><p><b>  六。結(jié)

91、論和展望</b></p><p>  在目前的工作,所需的材料參數(shù)的非線性運(yùn)動,向強(qiáng)化Abaqus中,自己的材料模型已被新確定。這些參數(shù)已被再利用,以找出造成壓力,冷卻液作為冷卻通道的溫度和等離子體加熱功能,一塑性變形。</p><p>  此外,在隧道掘進(jìn)機(jī)循環(huán)的行為進(jìn)行了模擬同時使用Abaqus中,自己的物質(zhì)模型和粘塑性材料模型考慮的物質(zhì)損失。</p><

92、;p>  另一方面,一些重要的設(shè)計規(guī)則,并已經(jīng)應(yīng)用的預(yù)測已與循環(huán)模擬的結(jié)果進(jìn)行了比較。原來從而指出,判據(jù),沒有履行即使傳統(tǒng)的SMT值。</p><p>  新計算s值*米引入類似釤,為歐洲鋼鐵聯(lián)盟97周期的循環(huán)軟化導(dǎo)致會計之間的目標(biāo)和實(shí)際結(jié)果差距較大。</p><p>  展覽的循環(huán)模擬結(jié)果無論是塑料的崩潰,也不是步步后第一個100個循環(huán)。這種差異可能意味著判據(jù),可能過于保守,對歐洲

93、鋼鐵聯(lián)盟97和新的設(shè)計規(guī)則應(yīng)加以考慮。</p><p>  然而,這項(xiàng)建議需要在進(jìn)一步的深入研究,其中包括所有(彈性和彈塑性核查)設(shè)計規(guī)則既防止M型和C型損害,審議的照射,氫的影響和腐蝕的影響冷卻劑,以及實(shí)際的隧道掘進(jìn)機(jī)的幾何可能變化。</p><p><b>  應(yīng)答</b></p><p>  我們感謝在請給予博士室溫蔡英文的實(shí)驗(yàn)數(shù)據(jù)。米韋

94、克。我們還要感謝她在執(zhí)行有限元模擬幫助夫人灣Rizzy。所提出的工作已部分支持歐洲聚變發(fā)展協(xié)議(EFDA)。</p><p><b>  參考</b></p><p>  [1] J. Aktaa河施密特,科學(xué)報告FZKA 6931,利希研究中心有限公司,2004</p><p>  [2]米魏克,私人通信,利希研究中心有限公司,2004<

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論