1、南昌大學(xué)碩士學(xué)位論文G(2,4)中的常曲率全純2球面姓名:金苗苗申請(qǐng)學(xué)位級(jí)別:碩士專業(yè):基礎(chǔ)數(shù)學(xué)指導(dǎo)教師:黎鎮(zhèn)琦20081211ABSTRACThtllispaper,westudyconstantcurvedholomorphic2spheresinG億矽andgiveacompleteproofforallanalyticexpressionof2。sphereswithconstantGauSsiancuⅣatureintheco
2、mplexGrassmannmanifoldG億剴InthefirstsectionwecnangeG但砂intoCP5byPlUckerembedding,thenp:S2專G(足,,1)callturnmt0aVeroneseembeddingAswewanttoprovethetheorem氏Proposition1、PT0posltlon2andL鋤ma3weregiveninthefirstsegmentInthesecond
3、partwefocusourattentiononholomorphicimmersionq):S2jG(k,n)IncaseA,weproVedthatwhen妒containsatrivialsubbundleandthemapping伊isnot如ll,緲belongtoTheoremAIncaseBwhenrank(cp)=2,wegetdeg(cp)≥2byFrenetfomula0fG口,砂Thenweproceedsepa