兩類細胞神經(jīng)網(wǎng)絡(luò)周期解的存在性與全局指數(shù)穩(wěn)定性.pdf_第1頁
已閱讀1頁,還剩42頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、南京航空航天大學(xué)碩士學(xué)位論文兩類細胞神經(jīng)網(wǎng)絡(luò)周期解的存在性與全局指數(shù)穩(wěn)定性姓名:周平平申請學(xué)位級別:碩士專業(yè):應(yīng)用數(shù)學(xué)指導(dǎo)教師:陳芳啟20081201兩類細胞神經(jīng)網(wǎng)絡(luò)周期解的存在性與全局指數(shù)穩(wěn)定性 iiAbstract At present, cellular neural networks, especially the research of the periodic solutions, have become a hot res

2、earch topic in the field of mathematics. It’s well know that the periodic phenomenon exists generally in the natural world. For instance, lots of biologic systems lie in the environment of periodic variation and many dyn

3、amics have the periodic characteristics. Some applications in the fields of cell neural networks demand that the networks search the only goal rapidly. Considering the convergence rate, the unique balance point of global

4、 exponential stabilization is requested in the networks. So it is important to study the existence and global exponential stability of periodic solutions for cellular neural networks. In this paper, we discuss the existe

5、nce and global exponential stability of periodic solutions for two classes of cellular neural networks, respectively. First, a class of Cohen-Grossberg neural networks with time-varying delays is studied. Assume that the

6、 behaved functions, amplification functions, and the activation functions satisfy the linear restrictions, we propose some new sufficient conditions which guarantee the existence of periodic solutions, by using the Mawhi

7、n’s continuation theorem for coincidence degree and some inequality analysis techniques. Based on Lyapunov functional method, the global exponential stability of periodic solutions for this class of neural networks is pr

8、esented. Then, we discuss a class of bidirectional associative memory neural networks with distributed delays. Under the conditions of the state functions satisfying the linear restrictions, the existence and global expo

9、nential stability of periodic solutions for this class of neural networks are given, by using the Mawhin’s continuation theorem and proper Lyapunov function. The results of this thesis are better than those existed alrea

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論