版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、新 新 新型 型 型含 含 含有 有 有兩 兩 兩個(gè) 個(gè) 個(gè)變 變 變量 量 量的 的 的非 非 非線 線 線性 性 性 時(shí) 時(shí) 時(shí)滯 滯 滯積 積 積分 分 分不 不 不等 等 等式 式 式及 及 及應(yīng) 應(yīng) 應(yīng)用 用 用研 究 生 姓 名: 李 林 榮學(xué) 科、專 業(yè): 數(shù)學(xué)、應(yīng)用數(shù)學(xué)研 究 方 向: 微分方程及應(yīng)用指 導(dǎo) 教 師: 孟 凡 偉 教授完 成 時(shí) 間: 2014 年 4 月曲阜師范大學(xué)碩士學(xué)位論文新 新 新型 型 型含 含
2、 含有 有 有兩 兩 兩個(gè) 個(gè) 個(gè)變 變 變量 量 量的 的 的非 非 非線 線 線性 性 性時(shí) 時(shí) 時(shí)滯 滯 滯積 積 積分 分 分不 不 不等 等 等式 式 式及 及 及應(yīng) 應(yīng) 應(yīng)用 用 用摘 摘 摘 要 要 要不等式是數(shù)學(xué)各個(gè)分支的主要研究?jī)?nèi)容, 無(wú)論在函數(shù)論、代數(shù)學(xué), 還是在幾何學(xué)的各個(gè)方向, 都占據(jù)著重要的位置, 其中積分不等式的發(fā)展對(duì)不等式的研究有著非常重要的意義. 在微分方程理論研究中, 雖然多數(shù)微分方程無(wú)法求出精確的解的
3、表達(dá)式, 但可以通過(guò)積分不等式對(duì)方程的解做出估計(jì), 因此積分不等式為研究微分方程、積分方程、差分方程等各種類型方程解的定性和定量性質(zhì)提供了有力的工具. 另一方面, 時(shí)標(biāo)理論將連續(xù)和離散分析統(tǒng)一起來(lái), 運(yùn)用該理論同樣可以研究差分和微積分, 也為研究不同方程解的性質(zhì)提供了很好的理論基礎(chǔ).本文主要研究了含有兩個(gè)變量的非線性時(shí)滯積分不等式, 這些不等式在解決偏微分方程邊值問(wèn)題解的有界性及唯一性起到了重要的作用.根據(jù)內(nèi)容本文分為以下三章:第一章
4、緒論, 主要介紹了積分不等式的發(fā)展, 幾個(gè)研究成果以及本文研究課題.第二章 主要研究下列含有兩個(gè)變量的非線性時(shí)滯積分不等式ψ(u(x, y)) ≤a(x, y) +∫ b(x)b(x0)∫ c(y)c(y0)[f1(x, y, s, t)φ1(u(s, t)) + g1(x, y, s, t)φ2(u(s, t))+∫ sb(x0)∫ tc(y0) h1(s, t, τ, σ)φ3(u(τ, σ))dτdσ]dtds+∫ xx0∫ yy
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 26222.非線性時(shí)滯積分不等式的推廣
- 27747.幾類非線性時(shí)滯積分不等式的推廣及其應(yīng)用
- 幾類時(shí)滯積分不等式的推廣及應(yīng)用.pdf
- 30625.幾類新的時(shí)滯積分不等式及其應(yīng)用
- 8057.幾類新的不連續(xù)時(shí)滯積分不等式及應(yīng)用
- 幾類非線性積分不等式及應(yīng)用研究.pdf
- 幾類新的非線性積分不等式及其應(yīng)用.pdf
- 兩個(gè)幾何不等式
- Gronwall-Bellman-Bihari型時(shí)滯積分不等式的推廣及其應(yīng)用.pdf
- 一類非線性積分不等式及其應(yīng)用.pdf
- 幾類積分不等式和離散不等式及其應(yīng)用的研究.pdf
- 幾類積分不等式的推廣及應(yīng)用.pdf
- 一個(gè)積分不等式的證明
- 幾類積分不等式的研究及應(yīng)用.pdf
- 兩類非線性變分不等式的神經(jīng)網(wǎng)絡(luò).pdf
- 若干積分不等式和差分不等式的推廣.pdf
- 不等式.均值不等式的應(yīng)用
- 27749.非線性volterrafredholm型離散不等式及其應(yīng)用
- 幾類新的時(shí)滯Volterra-Fredholm型積分不等式及應(yīng)用.pdf
- 積分不等式的證明方法
評(píng)論
0/150
提交評(píng)論