2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩41頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、圖像分割作為數(shù)字圖像分析的重要步驟之一。在實際的醫(yī)學(xué)圖像中,觀測圖像中經(jīng)常存在復(fù)雜噪聲、灰度不均勻以及低對比度的問題,使得精確、快速地分割圖像面臨諸多難題。而活動輪廓模型以其自適應(yīng)性、亞像素精度等優(yōu)點成為研究的熱點。
  本文針對以活動輪廓模型為基礎(chǔ)的圖像分割方法進(jìn)行了相對深入的探討。首先對傳統(tǒng)的活動輪廓模型進(jìn)行了分類歸納和綜述,然后重點介紹以區(qū)域信息為的幾何活動輪廓模型的數(shù)學(xué)背景以及幾個典型區(qū)域活動輪廓模型。最后對加速局部區(qū)域信

2、息活動輪廓模型的收斂速度進(jìn)行了重點研究,最終提出了一種基于活動輪廓模型的兩步快速分割算法,主要內(nèi)容如下:
  1.基于局部區(qū)域信息的活動輪廓模型可以抵抗未知復(fù)雜噪聲的影響,對灰度非同質(zhì)圖像可以達(dá)到較好的分割效果,但模型在計算時采取梯度下降法求解,因而計算復(fù)雜度高、收斂速度緩慢,同時由于僅利用局部區(qū)域信息,使得模型對設(shè)定的初始輪廓敏感。本文提出并采用兩步分割算法。第一步:采用下采樣減少數(shù)據(jù)量,對采樣后的圖像進(jìn)行分割,得到粗分割結(jié)果。

3、第二步:將粗分割結(jié)果上采樣到原始圖像的比例,并作為細(xì)分割的初始輪廓,進(jìn)行精細(xì)分割。研究結(jié)果表明,與一般的區(qū)域活動輪廓模型相比,兩步分割模型由于第一步分割提供了較好的初始值,能夠在極少的步數(shù)內(nèi)得到更精確的結(jié)果。
  2.第一步分割得到的粗輪廓上采樣到原始圖像的比例,分割結(jié)果與真實的目標(biāo)邊界很接近,但仍有一定的差距。為保證第二步分割水平集函數(shù)的演化穩(wěn)定、快速地進(jìn)行,引入距離正則化能量泛函。在第二步分割的模型中引入一個距離函數(shù)Rd,它能

4、夠校正模型與初始輪廓的偏差,保證曲線演化的穩(wěn)定性,該距離函數(shù)是連接兩步分割的關(guān)鍵。
  3.梯度下降流法是以函數(shù)當(dāng)前點對應(yīng)的梯度(或近似梯度)的反方向的規(guī)定步長距離點進(jìn)行迭代探索,目前應(yīng)用范圍廣,但其收斂速度慢,使得模型迭代過程長。本文算法中采用Bregman迭代算法快速求解,有效地提高了模型的分割效率。
  采用MATLAB軟件進(jìn)行大量仿真實驗,實驗結(jié)果表明,與CV模型、LBF模型、LIF模型以及LCK模型對比,本文算法能

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論