版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、滾動軸承作為工業(yè)現(xiàn)場旋轉(zhuǎn)機(jī)械中廣泛使用的重要零部件之一,其自身的運行狀態(tài)直接影響到旋轉(zhuǎn)機(jī)械設(shè)備的工作性能,甚至關(guān)系到整條生產(chǎn)線的運作性能。因此,對滾動軸承所處的狀態(tài)進(jìn)行檢測、識別顯得尤為重要。
工業(yè)現(xiàn)場滾動軸承的實際狀態(tài)往往具備復(fù)雜性和不確定性,針對于此,本文進(jìn)行了貝葉斯網(wǎng)絡(luò)(Bayesian Network,BN)在滾動軸承故障診斷中建模以及推理的應(yīng)用研究。在對滾動軸承的故障機(jī)理進(jìn)行了分析、研究的基礎(chǔ)上,提出了一種故障特征向
2、量提取方法,并將其與BN推理模型相結(jié)合,實現(xiàn)了對滾動軸承的故障診斷。由于實際獲得的故障數(shù)據(jù)數(shù)量常常是有限、甚至是稀缺的,而傳統(tǒng)的BN參數(shù)學(xué)習(xí)算法無法在該實際情況下學(xué)習(xí)出較為精確的BN推理模型參數(shù),針對此問題,本文還研究了稀缺樣本數(shù)據(jù)集下BN參數(shù)的學(xué)習(xí),提出了一種改進(jìn)型定性最大后驗概率(Improved Qualitative Maximum Posteriori,IQMAP)參數(shù)學(xué)習(xí)算法;最終,將IQMAP算法應(yīng)用于BN建模,驗證了該算
3、法在滾動軸承故障診斷應(yīng)用中的有效性。研究的主要工作包括以下幾個方面:
?。?)提出了一種滾動軸承故障診斷模型的特征向量提取方法,該方法實現(xiàn)了對滾動軸承診斷模型建模所需數(shù)據(jù)的預(yù)處理。原始振動信號不適宜直接作為人工智能模型的輸入,因而需要對原始振動信號進(jìn)行特征向量提取。因此,本文設(shè)計了特征向量提取函數(shù)。首先,將采集到的原始振動信號進(jìn)行小波包分解,獲得特征分量;然后,利用本文所設(shè)計的特征提取函數(shù)從特征分量中提取出第一特征向量。為加快B
4、N推理速率,提高診斷推理的實時性,需要對輸入節(jié)點的特征向量進(jìn)行離散化,本文還設(shè)計了相應(yīng)的離散化函數(shù)來離散化第一特征向量,形成推理模型的特征向量,該特征向量能夠直接用于BN建模以及作為BN診斷、推理的輸入。
?。?)提出了一種基于 BN的滾動軸承故障診斷方法,此方法較準(zhǔn)確地實現(xiàn)了滾動軸承故障診斷。在樣本數(shù)據(jù)完整、充足的情況下,利用本文所設(shè)計的特征向量提取方法提取出代表滾動軸承狀態(tài)的特征向量,并將特征向量分為訓(xùn)練特征向量和待診斷特征
5、向量。首先,利用最大似然估計法根據(jù)訓(xùn)練特征向量訓(xùn)練出BN參數(shù)模型,并在此基礎(chǔ)上建立BN模型。其次,將待診斷特征向量輸入已建立好的BN模型中,利用成熟的聯(lián)結(jié)樹(Junction Tree,JT)推理算法實現(xiàn)滾動軸承故障診斷、推理。在相同條件下,本文也采用BP神經(jīng)網(wǎng)絡(luò)方法進(jìn)行滾動軸承故障診斷。通過對比得知:本文所設(shè)計的故障診斷方法的正判率較高,表明了本文滾動軸承故障診斷方法的有效性。
?。?)進(jìn)行了部分特征向量缺失時的滾動軸承故障診
6、斷推理研究。在實際中,考慮到現(xiàn)場傳感器或通信過程丟失數(shù)據(jù)的情況時有發(fā)生,會致使?jié)L動軸承的特征向量缺失。因此,本文利用BN能夠在證據(jù)不充分條件下進(jìn)行推理的優(yōu)點,進(jìn)行了在部分特征向量缺失時的滾動軸承故障診斷推理實驗,實驗結(jié)果表明基于BN的滾動軸承故障診斷方法具有良好的魯棒性。
?。?)針對傳統(tǒng) BN參數(shù)學(xué)習(xí)算法在樣本數(shù)據(jù)集稀缺時學(xué)習(xí)結(jié)果不精確的問題,提出一種IQMAP參數(shù)學(xué)習(xí)算法。對現(xiàn)有BN參數(shù)學(xué)習(xí)算法進(jìn)行了研究,發(fā)現(xiàn)定性最大后驗概
7、率能夠結(jié)合虛擬采樣次數(shù)與實際樣本數(shù)據(jù)進(jìn)行參數(shù)學(xué)習(xí),但由于稀缺樣本數(shù)據(jù)集的波動性,QMAP參數(shù)學(xué)習(xí)結(jié)果易出現(xiàn)違反專家經(jīng)驗的情況。因此,本文提出一種將凸優(yōu)化與 QMAP相結(jié)合的改進(jìn)BN參數(shù)學(xué)習(xí)算法——IQMAP算法。首先,將樣本數(shù)據(jù)集的特征向量利用先驗約束條件進(jìn)行凸優(yōu)化,形成包含于較為精確且滿足專家經(jīng)驗可行域的第一參數(shù);之后,將該第一參數(shù)融入 QMAP參數(shù)學(xué)習(xí)算法進(jìn)行參數(shù)學(xué)習(xí)。實驗仿真表明該算法能夠在樣本數(shù)據(jù)集稀缺時學(xué)習(xí)出較為精確的BN參數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 貝葉斯網(wǎng)絡(luò)及其在電網(wǎng)故障診斷中的應(yīng)用研究.pdf
- 貝葉斯網(wǎng)絡(luò)及其在電網(wǎng)故障診斷中的應(yīng)用研究
- 貝葉斯網(wǎng)絡(luò)在機(jī)械故障診斷中的應(yīng)用研究.pdf
- 聲發(fā)射技術(shù)在滾動軸承故障診斷中的應(yīng)用研究.pdf
- 貝葉斯網(wǎng)絡(luò)在架空電力線路故障診斷中的應(yīng)用研究.pdf
- AMD和EMD方法在滾動軸承故障診斷中的應(yīng)用研究.pdf
- 貝葉斯網(wǎng)絡(luò)在道岔控制電路故障診斷中的應(yīng)用研究.pdf
- 貝葉斯網(wǎng)絡(luò)于車身故障診斷中的應(yīng)用研究.pdf
- 貝葉斯網(wǎng)絡(luò)在無線網(wǎng)絡(luò)故障診斷中的應(yīng)用研究.pdf
- 貝葉斯網(wǎng)絡(luò)在起重機(jī)故障診斷中的應(yīng)用.pdf
- 循環(huán)平穩(wěn)理論在齒輪及滾動軸承故障診斷中的應(yīng)用研究.pdf
- 單通道盲分離理論在滾動軸承故障診斷中的應(yīng)用研究.pdf
- 高階統(tǒng)計量在滾動軸承故障診斷中的應(yīng)用.pdf
- 小波分析技術(shù)在滾動軸承故障診斷的應(yīng)用研究.pdf
- 局部均值分解方法及其在滾動軸承故障診斷中的應(yīng)用研究.pdf
- 貝葉斯網(wǎng)絡(luò)在飛機(jī)故障診斷與維修優(yōu)化中的應(yīng)用.pdf
- 約束KICA信號分離方法及在滾動軸承故障診斷中的應(yīng)用研究.pdf
- EMD和模糊神經(jīng)網(wǎng)絡(luò)在滾動軸承故障診斷中的研究與應(yīng)用.pdf
- 小波分析和Hilbert分析在滾動軸承故障診斷中應(yīng)用研究.pdf
- 滾動軸承故障診斷技術(shù)及其工業(yè)應(yīng)用.pdf
評論
0/150
提交評論