版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、<p> 鎂薄板合金成形的可鍛性和可成形性的加工技術</p><p><b> 摘要</b></p><p> 金屬成型和金屬成形機床的新發(fā)展,顯示了鎂薄片具有優(yōu)秀的模鑄性能,如果工藝是在高溫下傳導。對鎂薄片成型的相應的機械性能的估價,已經在各種各樣的溫度和應變率的條件下進行的單軸向拉力的測試。鎂合金az31b、az61b的拉深測試和m1在200-25
2、0溫度范圍之間都有很好可成形性,除溫度之外,已經研究出的極限拉延比也影響模鑄的速度。產生的結果得出有可能由鎂薄片合金混合物代替?zhèn)鹘y(tǒng)的鋁和鋼薄片的結論。</p><p><b> ?、?引言</b></p><p> 為了減少燃料消耗、一般已經有的成就是減少汽車構造的重量的,增加重量輕的物資的使用,在這個條件下、鎂合金具有對工商企業(yè)集團有特殊的使用價值,因為他們的密度
3、低,只有1.74 g/cm3。</p><p> 不久的將來鎂合金將成為汽車零件模鑄的主要地材料。 模具鑄件技術允許放棄制造過程中復雜的幾何結構。</p><p> 然而,這個部分的機械性能經常不能滿足機械性能的必要條件,(例如耐久強度和延性)。一種有希望能替換的材料,毫無疑問是將模鑄 工藝帶進簡便化,那部分對機械性能和細粒的微觀結構有利的沒有氣孔的制造技術。然而、一種廣泛被應用的模鑄
4、技術在鎂合金的成型的工藝中受到了限制,模鑄技術和適當的工藝參數的不完善而不得不應用(2,3)。鎂薄板金屬部件的應用對汽車車身的構造提供一個很大的潛力。通常、汽車的車身完全由板料沖壓和表現大約25%飛行器質量組成。所以,鎂薄片替代傳統(tǒng)的材料應用,將導致重量減輕的實質。</p><p> ⒉鎂薄片的塑料性質 </p><p> 鎂合金在室溫下顯示出可成形性的極限,這個六方晶體和孿晶體的傾向
5、是唯一的允許有限的形變。那不同地定向微晶在獨立基礎滑動平面顯示出畸形,導致一個相互的滑動障礙(4、5)。通過應用的溫度完善可以對模鑄品質進行可觀的改善! 在200 -225溫度范圍里的可成型性的提高具有很好的可觀性(依靠合金成分) 見文獻《6》的研究。在棱形滑動面的六方形結構的熱活化性中發(fā)現了這個效果,見文獻《7》。</p><p> 2.1成型溫度對流動應力的影響</p><p>
6、一種對鎂薄片畸形性質要求的測定的詳細研究的金屬的特征值同樣各向異性或流動曲線見《8、9》。 因為在這個領域里的系統(tǒng)研究表明對各種各樣的鎂合金的溫度和應變率的可塑性的大量的調查涉及金屬成型和金屬成形機床的原理的影響不是可利用的(ifum)。圖1; 顯示鎂 金屬az31b在不同溫度的流動曲線 、 顯然那應力和可能的拉緊力,大量地依靠在那成型溫度上。在2008c以上溫度范圍內流動應力的減少隨溫度的變化而的
7、變化。</p><p><b> 3 鎂合金的拉深</b></p><p> 為了要研究鎂薄片在不同的成型溫度的可模鍛性,在IFUM與圓筒形工具系統(tǒng)中進行拉深測試,圖3顯示在50c的溫度的拉深測試的結果。然而那az31b在低點b01:45可能的拉深比率(拉深:30mm)合金az61b和m1顯示早的破裂,使用b01:6的拉深比率,AZ31 B 顯示與 AZ61 B
8、 和 M 1 類似的 破裂,這些測試確定鎂合金的可模鍛的低點溫度。 </p><p> 然而,調查結果顯示鎂合金在高溫的情況下有非常好的模鍛性。發(fā)現在2008c溫度下az31b的成型溫度具有最大bo的拉深比率,az61b和m1顯示鋁合金b0的最大價值提高到2:20:2.25.,AlMg4.5 Mn0.4 的比較顯示鋁合金在室溫下非常容易模鍛,鎂合金的增加的拉深比率在低點溫度與提高溫度的比較,結果表明從可拉長的測
9、試顯示那應力比率在鎂合金的機械道具的重要的影響力 。</p><p><b> 參考文獻。</b></p><p> [1] H. Kehler et al., Partikelversta¨rkte Leichtmetalle, Metall Band, 49,Heft 3, 1995.</p><p> [2] E. Doe
10、ge, K. Dro¨der, St. Janssen, Leichtbau mit Magnesiumknetlegierungen— Blechumformung und Pra¨zisionsschmieden TechnischerMg-Legierungen, Werkstattstechnik, Band 88, Heft 11/12,1998.</p><p> [3] E.
11、Doege, K. Dro¨der, F.P. Hamm, Sheet Metal Forming ofMagnesium Alloys, Proceedings of the IMA-Conference on MagnesiumMetallurgy, Clermont-Ferrand, France, October 1996.</p><p> [4] H.J. Bargel, G. Schul
12、ze, Werkstoffkunde, VDI-Verlag GmbH,Du¨sseldorf, 1988.</p><p> [5] C.S. Roberts, Magnesium and Its Alloys, Wiley, New York, 1960.</p><p> [6] G. Siebel, in: Beck (Ed.), Technology of Magn
13、esium and Its Alloys,Hughes, London, 1940.</p><p> [7] N.N.: Magnesium and Magnesium Alloys, Ullmann’s Encyclopediaof Industrial Chemistry, Reprint of Articles from 5th Edition, VCH,Weinheim, 1990.</p>
14、;<p> [8] E. Doege, K. Dro¨der, Processing of magnesium sheet metals by deepdrawing and stretch forming, Mat. Tech. 7–8 (1997) 19–23.</p><p> [9] E. Doege, K. Dro¨der, St. Janssen, Umforme
15、n von Magnesiumwerkstoffen,DGM-Fortbildungsseminar, Clausthal-Zellerfeld, Oktober1998, pp. 28–30.</p><p> [10] L. Taylor, H.E. Boyer, in: E.A. Durand, et al. (Eds.), MetalsHandbook, 8th Edition, Vol. 4, Ame
16、rican Society of Metals,</p><p> Cleveland, OH, 1969.</p><p> Sheet metal forming of magnesium wrought magnesium wrought alloys— formabilityand process technology</p><p><b>
17、 Abstract</b></p><p> New developments at the for Metal Forming and Metal Forming Machine Tools show that magnesium sheets possess excellent forming behavior, if the process is conducted at elevated
18、 temperatures. For the evaluation of mechanical properties relevant for forming of magnesium sheets, uni axial tensile tests have been carried out at various temperatures and strain rates.</p><p> Deep draw
19、ing tests with magnesium alloys AZ31B, AZ61B, and M1 show very good formability in a temperature range between 200 and</p><p> 2508C. Besides temperature, the influence of forming speed on limit drawing rat
20、io has been investigated. The obtained results lead to the conclusion that it is possible to substitute conventional aluminum and steel sheets by using magnesium sheet metal wrought alloys.</p><p> 1. Intro
21、duction</p><p> In order to reduce fuel consumption, general efforts have been made to decrease the weight of automobile constructions by an increased use of lightweight materials. In this framework, magnes
22、ium alloys are of special interest because of their low density of 1.74 g/cm3.</p><p> Presently, magnesium alloys for the use as automobile parts are mainly processed by die casting. The die casting techno
23、logy allows the manufacturing of parts with complex geometry. However, the mechanical properties of these parts often do not meet the requirements concerning the mechanical properties (e.g. endurance strength and ductili
24、ty). A promising alternative has to be seen in components that are manufactured by forming processes. The parts manufactured by this technology are characterized</p><p> Automotive body constructions offer
25、a great potential for the application of magnesium sheet metal components.</p><p> In general, the automotive body completely consists of sheet metal parts and represents a share of about 25% of the entire
26、vehicle mass. Therefore, the substitution of conventional sheet materials by magnesium sheets would lead to essential weight savings in this application.</p><p> 2. Plastic material properties of magnesium
27、sheets</p><p> Magnesium alloys show a limited formability at room temperature. This results from the fact that the hexagonal crystal structure and the low tendency to twinning only allow limited deformatio
28、ns. The differently orientated crystallites only show a deformation on the individual base slip plane, which leads to a mutual slip hindrance [4, 5]. A considerable improvement of the forming qualities can be achieved by
29、 applying temperature. The considerable increase in formability that occurs in the temper</p><p> 2.1. Influence of forming temperature on flow stress</p><p> A detailed evaluation of the defo
30、rmation properties of magnesium sheets requires the determination of the material’s characteristic values like anisotropy or flow curves [8, 9]. </p><p> Because systematic investigations in this area are n
31、ot available, extensive investigations concerning the influence of temperature and strain rate on plastic properties of various magnesium alloys were performed at Institute for Metal Forming and Metal Forming Machine Too
32、ls (IFUM). Fig. 1 displays flow curves of magnesium sheet material AZ31B at different temperatures, determined in the uniaxial tensile test according to EN 10002, part 5.</p><p> It is obvious that the stre
33、sses and possible strains largely depend on the forming temperature. The decrease of flow stresses in the temperature range above 2008C attributes to temperature-dependent relaxation.</p><p> 3. Deep drawin
34、g of magnesium alloys</p><p> In order to investigate the formability of magnesium sheets, deep drawing tests at different forming temperatures were carried out at IFUM with a cylindrical tool system.Fig. 3
35、 shows the results of deep drawing tests at a temperature of 50C. Whereas the deep drawing of the alloy AZ31B using a low drawing ratio of b0 1:45 was possible (drawing depth: 30 mm), the alloys AZ61B and M1 showed early
36、 fracture. Using drawing ratio of b0 1:6, AZ31B showed fracture similar to AZ61B and M1. These tests con</p><p> However, the investigated magnesium alloys show very good formability at higher temperature ,
37、The maximum limit drawing ratio of b0 ; max 2:52 was detected for AZ31B at a forming temperature of 2008C. AZ61B and M1 show maximum values of approximately b0 ; max 2:20 up to</p><p> 2.25. The values of
38、the aluminum alloy AlMg4.5Mn0.4 are displayed for comparison. Due to the good formability of the aluminum alloy at room temperature, the increase in limit drawing ratio with rising temperature is low compared to the magn
39、esium alloys.The results gained from the tensile tests showed the significant influence of strain rate on the mechanical properties of magnesium alloys. </p><p> [1] H. Kehler et al., Partikelversta¨rk
40、te Leichtmetalle, Metall Band, 49,</p><p> Heft 3, 1995.</p><p> [2] E. Doege, K. Dro¨der, St. Janssen, Leichtbau mit Magnesiumknetlegierungen</p><p> — Blechumformung und P
41、ra¨zisionsschmieden Technischer</p><p> Mg-Legierungen, Werkstattstechnik, Band 88, Heft 11/12,</p><p><b> 1998.</b></p><p> [3] E. Doege, K. Dro¨der, F.P.
42、Hamm, Sheet Metal Forming of</p><p> Magnesium Alloys, Proceedings of the IMA-Conference on Magnesium</p><p> Metallurgy, Clermont-Ferrand, France, October 1996.</p><p> [4] H.J.
43、 Bargel, G. Schulze, Werkstoffkunde, VDI-Verlag GmbH,</p><p> Du¨sseldorf, 1988.</p><p> [5] C.S. Roberts, Magnesium and Its Alloys, Wiley, New York, 1960.</p><p> [6] G. Si
44、ebel, in: Beck (Ed.), Technology of Magnesium and Its Alloys,</p><p> Hughes, London, 1940.</p><p> [7] N.N.: Magnesium and Magnesium Alloys, Ullmann’s Encyclopedia</p><p> of In
45、dustrial Chemistry, Reprint of Articles from 5th Edition, VCH,</p><p> Weinheim, 1990.</p><p> [8] E. Doege, K. Dro¨der, Processing of magnesium sheet metals by deep</p><p>
46、 drawing and stretch forming, Mat. Tech. 7–8 (1997) 19–23.</p><p> [9] E. Doege, K. Dro¨der, St. Janssen, Umformen von Magnesiumwerkstoffen,</p><p> DGM-Fortbildungsseminar, Clausthal-Zel
47、lerfeld, Oktober</p><p> 1998, pp. 28–30.</p><p> [10] L. Taylor, H.E. Boyer, in: E.A. Durand, et al. (Eds.), Metals</p><p> Handbook, 8th Edition, Vol. 4, American Society of Me
48、tals,</p><p> ol. 4, American Society of Metals,</p><p> Cleveland, OH, 1969.</p><p> [11] K. Siegert, et al., Superplastische Aluminiumbleche — Verarbeitung</p><p>
49、 mit numerischen Pressen, Metall, 45 Jahrgang, Heft 4, 1991.</p><p> [12] E.F. Emley, Principles of Magnesium Technology, Pergamon Press,</p><p> Oxford, 1966.</p><p> [13] D. S
50、chmoeckel, Temperaturgefu¨hrte Prozeßsteuerung beim Umformen</p><p> von Aluminiumblechen, EFB-Forschungsbericht, Nr. 55, 1994.</p><p> [14] H. Beißwa¨nger, Warmziehen von
51、Leichtmetallblechen, Mitteilung</p><p> der Forschungsgesellschaft Blechverarbeitung, Nr. 27, 1950.</p><p> [15] E. Kursetz, Die Anwendung von Wa¨rme bei der Herstellung von</p>&l
52、t;p> Blechformteilen aus Schwer Umformbaren Werkstoffen, Ba¨nder</p><p> Bleche Rohre, Nr. 5, 1974.</p><p> [16] O. Heuel, Optimierung der Werkzeugtemperatur Durch Richtige</p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鎂薄板合金成形的可鍛性和可成形性的加工技術【中英文word】【中文1400字】機電類外文翻譯
- 鎂薄板合金成形的可鍛性和可成形性的加工技術【中英文word】【中文1400字】機電類外文翻譯
- 變形鎂合金熱鍛可成形性參數辨識與晶粒細化研究.pdf
- 金屬板材漸進成形可成形性研究.pdf
- 金屬板料漸進成形的可成形性及數值模擬研究.pdf
- 鈦合金薄板漸進成形技術的實驗研究.pdf
- 外文翻譯--電火花成形加工技術的現狀與發(fā)展趨勢
- 外文翻譯--電火花成形加工技術的現狀與發(fā)展趨勢
- 鋁-鋰合金薄板激光彎曲成形技術的研究.pdf
- 考慮可成形性的拼焊板毛坯反求方法研究.pdf
- 基于CATIA的覆蓋件產品可成形性同步仿真系統(tǒng).pdf
- 弧齒錐齒輪的齒形設計與精鍛成形加工技術研究.pdf
- 外文翻譯-可機加工性
- 鎂合金成形與加工技術及其使用性能的研究.pdf
- 外文翻譯-- 可機加工性
- 鈦合金薄板激光成形特性研究.pdf
- 外文翻譯--- 材料的可機加工性
- 高溫合金葉片精鍛成形研究.pdf
- 鋁合金精鍛成形的應用基礎研究.pdf
- 外文翻譯--可機加工性.doc
評論
0/150
提交評論