版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、<p><b> 目 錄</b></p><p><b> 摘要I</b></p><p> AbstractII</p><p><b> 第1章 緒論1</b></p><p> 1.1 汽車轉(zhuǎn)向系統(tǒng)簡介1</p><p
2、> 1.1.1 轉(zhuǎn)向系的設(shè)計要求1</p><p> 1.2 EPS的特點及發(fā)展現(xiàn)狀2</p><p> 1.2.1 EPS與其他系統(tǒng)比較2</p><p> 1.2.2 EPS的特點2</p><p> 1.2.3 EPS在國內(nèi)外的應(yīng)用狀況3</p><p> 1.3 本課題的
3、研究意義4</p><p> 第2章 電動助力轉(zhuǎn)向系統(tǒng)的總體組成5</p><p> 2.1 電動助力轉(zhuǎn)向系統(tǒng)的機理及類型5</p><p> 2.1.1 電動助力轉(zhuǎn)向系統(tǒng)的機理5</p><p> 2.1.2 電動助力轉(zhuǎn)向系統(tǒng)的類型7</p><p> 2.2 電動助力轉(zhuǎn)向系統(tǒng)的關(guān)鍵部件
4、9</p><p> 2.2.1 扭矩傳感器9</p><p> 2.2.2 車速傳感器9</p><p> 2.2.3 電動機9</p><p> 2.2.4 減速機構(gòu)10</p><p> 2.2.5 電子控制單元10</p><p> 2.3 電動助力
5、轉(zhuǎn)向的助力特性11</p><p> 第3章 電動助力轉(zhuǎn)向系統(tǒng)的設(shè)計12</p><p> 3.1 對動力轉(zhuǎn)向機構(gòu)的要求12</p><p> 3.2 齒輪齒條轉(zhuǎn)向器的設(shè)計與計算12</p><p> 3.2.1 轉(zhuǎn)向系計算載荷的確定13</p><p> 3.2.2 齒輪齒條式轉(zhuǎn)向器的設(shè)
6、計14</p><p> 3.2.3 齒輪齒條轉(zhuǎn)向器轉(zhuǎn)向橫拉桿的運動分析22</p><p> 3.2.4 齒輪齒條傳動受力分析24</p><p> 3.2.5 齒輪軸的強度校核24</p><p> 第4章 轉(zhuǎn)向傳動機構(gòu)的優(yōu)化設(shè)計29</p><p> 4.1 結(jié)構(gòu)與布置29<
7、/p><p> 4.2 用解析法求內(nèi)、外輪轉(zhuǎn)角關(guān)系30</p><p> 4.3 轉(zhuǎn)向傳動機構(gòu)的優(yōu)化設(shè)計32</p><p> 4.3.1 目標(biāo)函數(shù)的建立32</p><p> 4.3.2 設(shè)計變量與約束條件33</p><p> 4.4 研究結(jié)論36</p><p>
8、<b> 結(jié)論37</b></p><p><b> 致謝39</b></p><p><b> 參考文獻40</b></p><p><b> 附錄141</b></p><p><b> 附錄246</b>&l
9、t;/p><p><b> 摘要</b></p><p> 汽車轉(zhuǎn)向系統(tǒng)可按轉(zhuǎn)向的能源不同分為機械轉(zhuǎn)向系統(tǒng)和動力轉(zhuǎn)向系統(tǒng)兩類。</p><p> 汽車電動助力轉(zhuǎn)向系統(tǒng)是一種新型的汽車動力轉(zhuǎn)向系統(tǒng),與傳統(tǒng)液壓轉(zhuǎn)向系統(tǒng)相比,采用電動機直接提供助力,具有多方面優(yōu)越性。近年來已有很多中高檔汽車配備了動力轉(zhuǎn)向系統(tǒng)裝置,EPS研究也成為汽車工業(yè)的熱門課題
10、之一,具有重要研究價值和巨大潛在應(yīng)用前景。 </p><p> 在本文中重點進行齒輪齒條轉(zhuǎn)向器的設(shè)計計算和對轉(zhuǎn)向齒輪軸的校核,及轉(zhuǎn)向傳動機構(gòu)的優(yōu)化設(shè)計。主要方法和理論采用汽車設(shè)計的經(jīng)驗參數(shù)和大學(xué)所學(xué)機械設(shè)計的課程內(nèi)容進行設(shè)計,并做了歸納和總結(jié)。</p><p> 關(guān)鍵詞 轉(zhuǎn)向系統(tǒng);電動助力轉(zhuǎn)向系統(tǒng);齒輪齒條轉(zhuǎn)向器;優(yōu)化設(shè)計</p><p><b&
11、gt; Abstract</b></p><p> The steering system can be divided into mechanical energy and power steering system.</p><p> Electric power steering system is a new type of vehicle power steer
12、ing system, compared with traditional hydraulic steering systems, directly with the motor power, has many advantages. In recent years, many in the luxury car have been equipped with a power steering system device, EPS st
13、udies have become a hot topic in automotive industry, great research value and great potential applications.</p><p> This article focus on the design of the rack and pinion steering gear shaft calculation a
14、nd verification, and optimization of steering linkage. The main methods and theories of experience with automotive design parameters and the university curriculum in mechanical design to design, and made and summarized.&
15、lt;/p><p> Key words Steering System;Electric Power Steering ;</p><p> Rack and pinion steering;Optimization</p><p><b> 第1章 緒論</b></p><p> 1.1 汽車轉(zhuǎn)向系統(tǒng)簡介&
16、lt;/p><p> 汽車轉(zhuǎn)向系是用來保持或者改變汽車行駛方向的機構(gòu),在汽車轉(zhuǎn)向行駛時,保證各轉(zhuǎn)向輪之間有協(xié)調(diào)的轉(zhuǎn)角關(guān)系。它由轉(zhuǎn)向操縱機構(gòu)、轉(zhuǎn)向器和轉(zhuǎn)向傳動機構(gòu)組成。</p><p> 轉(zhuǎn)向系統(tǒng)作為汽車的一個重要組成部分,其性能的好壞將直接影響到汽車的轉(zhuǎn)向特性、穩(wěn)定性、和行駛安全性。目前汽車轉(zhuǎn)向技術(shù)主要有七大類:手動轉(zhuǎn)向技術(shù)(MS)、液壓助力轉(zhuǎn)向技術(shù)(HPS)、電控液壓助力轉(zhuǎn)向技術(shù)(ECH
17、PS)、電動助力轉(zhuǎn)向技術(shù)(EPS)、四輪轉(zhuǎn)向技術(shù)(4WS)、主動前輪轉(zhuǎn)向技術(shù)(AFS)和線控轉(zhuǎn)向技術(shù)(SBW)。轉(zhuǎn)向系統(tǒng)市場上以HPS、ECHPS、EPS應(yīng)用為主。電動助力轉(zhuǎn)向具有節(jié)約燃料、有利于環(huán)境、可變力轉(zhuǎn)向、易實現(xiàn)產(chǎn)品模塊化等優(yōu)點,是一項緊扣當(dāng)今汽車發(fā)展主題的新技術(shù),他是目前國內(nèi)轉(zhuǎn)向技術(shù)的研究熱點。</p><p> 1.1.1 轉(zhuǎn)向系的設(shè)計要求</p><p> (1) 汽車
18、轉(zhuǎn)彎行駛時,全部車輪應(yīng)繞瞬時轉(zhuǎn)向中心旋轉(zhuǎn),任何車輪不應(yīng)有側(cè)滑。不滿足這項要求會加速輪胎磨損,并降低汽車的行駛穩(wěn)定性。</p><p> (2) 汽車轉(zhuǎn)型行駛后,在駕駛員松開轉(zhuǎn)向盤的條件下,轉(zhuǎn)向輪能自動返回到直線行駛位置,并穩(wěn)定行駛。</p><p> (3) 汽車在任何行駛狀態(tài)下,轉(zhuǎn)向輪都不得產(chǎn)生共振,轉(zhuǎn)向盤沒有擺動。</p><p> (4) 轉(zhuǎn)向傳動機構(gòu)和
19、懸架導(dǎo)向裝置共同工作時,由于運動不協(xié)調(diào)使車輪產(chǎn)生的擺動應(yīng)最小。</p><p> (5) 保證汽車有較高的機動性,具有迅速和小轉(zhuǎn)彎行駛能力。</p><p><b> (6) 操縱輕便。</b></p><p> (7) 轉(zhuǎn)向輪碰撞到障礙物以后,傳給轉(zhuǎn)向盤的反沖力要盡可能小。</p><p> (8) 轉(zhuǎn)向器和轉(zhuǎn)
20、向傳動機構(gòu)的球頭處,有消除因磨損而產(chǎn)生間隙的調(diào)整機構(gòu)。</p><p> (9) 在車禍中,當(dāng)轉(zhuǎn)向軸和轉(zhuǎn)向盤由于車架或車身變形而共同后移時,轉(zhuǎn)向系應(yīng)有能使駕駛員免遭或減輕傷害的防傷裝置。</p><p> (10) 進行運動校核,保證轉(zhuǎn)向輪與轉(zhuǎn)向盤轉(zhuǎn)動方向一致。</p><p> 1.2 EPS的特點及發(fā)展現(xiàn)狀</p><p> 1
21、.2.1 EPS與其他系統(tǒng)比較</p><p> 對于電動助力轉(zhuǎn)向機構(gòu)(EPS),電動機僅在汽車轉(zhuǎn)向時才工作并消耗蓄電池能量;而對于常流式液壓動力轉(zhuǎn)向機構(gòu),因液壓泵處于長期工作狀態(tài)和內(nèi)泄漏等原因要消耗較多的能量。兩者比較,電動助力轉(zhuǎn)向的燃料消耗率僅為液壓動力轉(zhuǎn)向的16%~20%。</p><p> 液壓動力轉(zhuǎn)向機構(gòu)的工作介質(zhì)是油,任何部位出現(xiàn)漏油,油壓將建立不起來,不僅失去助力效能,
22、并對環(huán)境造成污染。當(dāng)發(fā)動機出現(xiàn)故障停止工作時,液壓泵也不工作,結(jié)果也會喪失助力效能,這就降低了工作可靠性。電動助力轉(zhuǎn)向機構(gòu)不存在漏油的問題,只要蓄電池內(nèi)有電提供給電動助力轉(zhuǎn)向機構(gòu),就能有助力作用,所以工作可靠。若液壓動力轉(zhuǎn)向機構(gòu)的油路進入空氣或者貯油罐油面過低,工作時將產(chǎn)生較大噪聲,在排除氣體之前會影響助力效果;而電動助力轉(zhuǎn)向僅在電動機工作時有輕微的噪聲。</p><p> 電動助力轉(zhuǎn)向與液壓動力轉(zhuǎn)向比較,轉(zhuǎn)動
23、轉(zhuǎn)向盤時僅需克服轉(zhuǎn)向器的摩擦阻力,不存在回位彈簧阻力和反映路感的油壓阻力。電動助力轉(zhuǎn)向還有整體結(jié)構(gòu)緊湊、部件少、占用的空間尺寸小、質(zhì)量比液壓動力轉(zhuǎn)向約輕20%~25%以及汽車上容易布置等優(yōu)點。</p><p> 1.2.2 EPS的特點</p><p> (1)EPS節(jié)能環(huán)保。</p><p> 由于發(fā)動機運轉(zhuǎn)時,液壓泵始終處于工作狀態(tài),液壓轉(zhuǎn)向系統(tǒng)使整個發(fā)
24、動機燃油消耗量增加了3%~5%,而EPS以蓄電池為能源,以電機為動力元件,可獨立于發(fā)動機工作,EPS幾乎不直接消耗發(fā)動機燃油。EPS不存在液壓動力轉(zhuǎn)向系統(tǒng)的燃油泄漏問題,EPS通過電子控制,對環(huán)境幾乎沒有污染。</p><p> (2)EPS裝配方便。</p><p> EPS的主要部件可以集成在一起,易于布置,與液壓動力轉(zhuǎn)向相比減少了許多原件,沒有液壓系統(tǒng)所需要的油泵、油管、壓力流量
25、控制閥、儲油罐等,原件數(shù)目少,裝配方便,節(jié)約時間。</p><p> (3)EPS效率高。</p><p> 液壓動力轉(zhuǎn)向系統(tǒng)效率一般在60%~70%,而EPS得效率較高,可高達90%以上。</p><p> (4)EPS路感好。</p><p> 傳統(tǒng)純液壓動力轉(zhuǎn)向系大多采用固定放大倍數(shù),工作驅(qū)動力大,但卻不能實現(xiàn)汽車在各種車速下駕
26、駛時的輕便性和路感。而EPS系統(tǒng)的滯后性可以通過EPS控制器的軟件加以補償,是汽車在各種速度下都能得到滿意的轉(zhuǎn)向助力。</p><p> (5)EPS回正性好。</p><p> EPS系統(tǒng)結(jié)構(gòu)簡單,不僅操作簡便,還可以通過調(diào)整EPS控制器的軟件,得到最佳的回正性,從而改善汽車的操縱穩(wěn)定性和舒適性。</p><p><b> (6)動力性。</
27、b></p><p> EPS系統(tǒng)可隨車速的高低主動分配轉(zhuǎn)向力,不直接消耗發(fā)動機功率,只在轉(zhuǎn)向時才起助力作用,保障發(fā)動機充足動力。(不像HPS液壓系統(tǒng),即使在不轉(zhuǎn)向時,油泵也一直運轉(zhuǎn)處于工作狀態(tài),降低了使用壽命)</p><p> 1.2.3 EPS在國內(nèi)外的應(yīng)用狀況</p><p> 國外EPS的發(fā)展之路:</p><p>
28、 因為微型轎車上狹小的發(fā)動機艙空間給液壓助力轉(zhuǎn)向系統(tǒng)的安裝帶來了很大的麻煩,而EPS原件比較少,重量輕,裝配方便,比較適合在微型轎車上安裝。因此在國外,EPS系統(tǒng)首先是在微型轎車上發(fā)展起來的。</p><p> 上世紀80年代初期,日本鈴木公司首次在其Cervo轎車上安裝了EPS系統(tǒng),隨后還應(yīng)用在其Alto車上。此后,EPS在日本得到迅速發(fā)展。出于節(jié)能環(huán)保的考慮,歐、美等國的汽車公司也相繼對EPS進行了開發(fā)和研
29、究。雖然比日本晚了十年時間,但是歐美國家的開發(fā)力度比較大,所選擇的產(chǎn)品類型也有所不同。日本起初選擇了技術(shù)相對成熟的有刷電機。</p><p> 有刷電機比較成熟,在汽車上的應(yīng)用較廣,比如雨刷、車窗等部分,稍作改進就適應(yīng)了EPS的要求,因此研發(fā)周期較短,上世紀80年代末期就開始產(chǎn)業(yè)化,主要裝配在微型車上。而歐美則選擇了難度較大的無刷電機,但是電子控制系統(tǒng)比較復(fù)雜,延長了研發(fā)周期。直到90年代中期歐美才開始量產(chǎn)。從
30、長遠發(fā)展看,有刷電機存在一定弊端,比如電機產(chǎn)生的噪聲較難克服,磨損較嚴重,存在電磁干擾等問題。因此,日本現(xiàn)在國內(nèi)裝配的EPS也逐漸轉(zhuǎn)向無刷電機了。</p><p> 國內(nèi)EPS的發(fā)展現(xiàn)狀:</p><p> 我國汽車電子行業(yè)的總體發(fā)展相對滯后,但是,隨著汽車對環(huán)保、節(jié)能和安全性要求的進一步提高,代表著現(xiàn)代汽車轉(zhuǎn)向系統(tǒng)的發(fā)展方向的EPS電動助力轉(zhuǎn)向系統(tǒng)已被我國列為高新科技產(chǎn)業(yè)項目之一,國
31、內(nèi)各大院校、科研機構(gòu)和企業(yè)在進行EPS技術(shù)的研究,也有少數(shù)供應(yīng)商能批量提供轉(zhuǎn)向軸式的EPS系統(tǒng)。但總的來講目前國內(nèi)EPS技術(shù)還不成熟;供應(yīng)商所提供的EPS系統(tǒng)還未達到產(chǎn)品級的要求,且類型單一,還不能滿足整車廠需要。據(jù)悉,自主品牌研發(fā)的EPS系統(tǒng)離產(chǎn)業(yè)化就差整車廠批量裝車認可這一臺階了,相信很快就可以實現(xiàn)量產(chǎn)。EPS系統(tǒng)是未來動力轉(zhuǎn)向系統(tǒng)的一個發(fā)展趨勢。</p><p> 1.3 本課題的研究意義</p&
32、gt;<p> 隨著科技的發(fā)展和人們生活水平及環(huán)保意識的提高,汽車轉(zhuǎn)向助力肯定會向更輕便、更節(jié)能、更安全的方向發(fā)展,而本課題正是沿著這個方向?qū)ζ嚨霓D(zhuǎn)向系統(tǒng)進行了研究?,F(xiàn)存的汽車,大部分都是傳統(tǒng)液壓助力轉(zhuǎn)向系統(tǒng),甚至沒有助力轉(zhuǎn)向系統(tǒng),電動助力轉(zhuǎn)向系統(tǒng)能提供比其更安全、更舒適的轉(zhuǎn)向操控性和節(jié)能效果。本課題對該系統(tǒng)的進行了深入的研究,并將其應(yīng)用于實踐,這對于推動該系統(tǒng)的發(fā)展和最終的產(chǎn)品化應(yīng)用,對于推動機械、傳感器技術(shù)和電子器
33、件制造等相關(guān)產(chǎn)業(yè)的發(fā)展,對于提高我國汽車電子化水平和加快轉(zhuǎn)向系統(tǒng)產(chǎn)業(yè)化發(fā)展具有十分重要的意義。</p><p> 在可預(yù)見的將來,電動助力轉(zhuǎn)向系統(tǒng)在汽車領(lǐng)域必定會有廣泛的應(yīng)用。</p><p><b> 本章小結(jié)</b></p><p> 這一章介紹了現(xiàn)在應(yīng)用的汽車轉(zhuǎn)向技術(shù),并對電動助力轉(zhuǎn)向系統(tǒng)和液壓助力轉(zhuǎn)向系統(tǒng)進行了分析比較。還闡述了E
34、PS的國內(nèi)外發(fā)展?fàn)顩r。</p><p> 第2章 電動助力轉(zhuǎn)向系統(tǒng)的總體組成</p><p> 2.1 電動助力轉(zhuǎn)向系統(tǒng)的機理及類型</p><p> 近年來,電動助力轉(zhuǎn)向機構(gòu)在乘用車上得到應(yīng)用,并有良好的發(fā)展前景。電動助力轉(zhuǎn)向機構(gòu),除去應(yīng)當(dāng)滿足對液壓式動力轉(zhuǎn)向機構(gòu)機構(gòu)的一些相似要求以外,同時還應(yīng)當(dāng)滿足:具有故障自診斷和報警功能;有良好的抗振動和抗干擾能力
35、等;當(dāng)?shù)孛媾c車輪之間有反向沖擊力作用時,電動助力轉(zhuǎn)向機構(gòu)應(yīng)迅速反應(yīng),制止轉(zhuǎn)向盤轉(zhuǎn)動;在過載使用條件下有過載保護功能等。</p><p> 2.1.1 電動助力轉(zhuǎn)向系統(tǒng)的機理</p><p> 電動助力轉(zhuǎn)向機構(gòu)由機械轉(zhuǎn)向器與電動助力部分相結(jié)合構(gòu)成。電動助力部分包括電動機、電池、傳感器和控制器(ECU)及線束,有的還有減速機構(gòu)和電磁離合器等(圖2-1)</p><p&
36、gt; 圖2-1 電動助力轉(zhuǎn)向機構(gòu)示意圖</p><p> 目前用于乘用車的電動助力轉(zhuǎn)向機構(gòu)的轉(zhuǎn)向器,均采用齒輪齒條式轉(zhuǎn)向器。其功能除用來傳遞來自轉(zhuǎn)向盤的力矩與運動以外,還有增扭、降速作用。轉(zhuǎn)向過程中,電動機將來自蓄電池的電能轉(zhuǎn)變?yōu)闄C械能向轉(zhuǎn)向系輸出而構(gòu)成轉(zhuǎn)向助力矩,并完成助力作用。與電動機連接的減速機構(gòu)有蝸輪蝸桿、滾珠螺桿螺母或行星齒輪機構(gòu)等,其作用也是降速、增扭。裝在減速機構(gòu)附近的離合器(通常為電磁離合器
37、)是為了保證電動助力轉(zhuǎn)向機構(gòu)只在預(yù)先設(shè)定的行駛速度范圍內(nèi)工作。在車速達到某一設(shè)定值時,離合器分離,并暫時停止電動機的助力作用。與此同時,轉(zhuǎn)向機構(gòu)也暫時轉(zhuǎn)為機械式轉(zhuǎn)向機構(gòu)。當(dāng)電動機發(fā)生故障時,離合器也自動分離。離合器分離后再行轉(zhuǎn)向時,可不必因帶動電動機而消耗駕駛員體力。單片式電磁離合器包括主動輪、從動軸、壓盤、磁化線圈和滑環(huán)等。</p><p> 1.主動輪 2.磁化線圈 3.壓盤 4.花鍵 </p>
38、<p> 5.從動軸 6軸承 7滑環(huán) 8電動機</p><p> 圖2-2 電磁離合器工作原理簡圖</p><p> 其工作原理如圖所示,裝有磁化線圈2的主動輪1與電動機軸固定連接,來自控制器的控制電流經(jīng)滑環(huán)7輸入磁化線圈,于是主動輪產(chǎn)生電磁吸力,將壓盤3吸到主動輪上,然后電動機的動力經(jīng)主動輪、壓盤及壓盤轂上的花鍵傳給從動軸5,實現(xiàn)助力作用。</p>&l
39、t;p> 汽車以較高車速轉(zhuǎn)向行駛,作用在轉(zhuǎn)向盤上的力矩將減小,以至于達到無需助力的程度,此時可設(shè)定:達到此車速時,電磁離合器停止工作。還有,在電動機停止工作以后,電磁離合器在控制器的控制下也要分離或者自動分離。此后,在進行再進行轉(zhuǎn)向?qū)⒉淮嬖谥ψ饔茫敝岭妱訖C恢復(fù)工作為止。</p><p> 電動助力轉(zhuǎn)向機構(gòu)的工作原理如下:</p><p> 當(dāng)駕駛員對轉(zhuǎn)向盤施力并轉(zhuǎn)動轉(zhuǎn)向盤時
40、,位于轉(zhuǎn)向盤下方與轉(zhuǎn)向軸連接的轉(zhuǎn)矩傳感器將經(jīng)扭桿彈簧連接在一起的上、下轉(zhuǎn)向軸的相對轉(zhuǎn)動角位移信號轉(zhuǎn)變?yōu)殡娦盘杺髦量刂破?,在同一時刻車速信號也傳至控制器。根據(jù)以上兩信號,控制器確定電動機的旋轉(zhuǎn)方向和助力轉(zhuǎn)矩的大小。之后,控制器將輸出的數(shù)字量經(jīng)D/A轉(zhuǎn)換器,轉(zhuǎn)換為模擬量,并將其輸入電流控制電路。電流控制電路將來自微機的電流命令值同電動機電流的實際值進行比較后生成一個差值信號,同時將此信號送往電動機驅(qū)動電路,該電路驅(qū)動電動機,并向電動機提供控
41、制電流,完成助力轉(zhuǎn)向作用。 </p><p> 2.1.2 電動助力轉(zhuǎn)向系統(tǒng)的類型</p><p> EPS系統(tǒng)依據(jù)電動機布置位置的不同可分為轉(zhuǎn)向軸助力式、小齒輪助力式、齒條助力式三個基本類型(圖2-3)</p><p> a) b) c)<
42、/p><p> a) 轉(zhuǎn)向軸助力式 b) 齒輪助力式 c) 齒條助力式</p><p> 圖2-3 EPS系統(tǒng)的類型</p><p> (1) 轉(zhuǎn)向軸助力式 轉(zhuǎn)向軸助力式電動助力轉(zhuǎn)向機構(gòu)的電動機布置在靠近轉(zhuǎn)向盤下方,并經(jīng)蝸輪蝸桿機構(gòu)與轉(zhuǎn)向軸連接(圖2-3a)。這種布置方案的特點是:</p><p> 由于轉(zhuǎn)向軸助力式電動助力轉(zhuǎn)向的電動
43、機布置在駕駛室內(nèi),所以有良好的工作條件;因電動機輸出的助力轉(zhuǎn)矩經(jīng)過減速機構(gòu)增大后傳給轉(zhuǎn)向軸,所以電動機輸出的助力轉(zhuǎn)矩相對小些,電動機尺寸也小,這又有利于在車上布置和減輕質(zhì)量;電動機、轉(zhuǎn)矩傳感器、減速機構(gòu)、電磁離合器等裝為一體是結(jié)構(gòu)緊湊,上述部件又與轉(zhuǎn)向器分開,故拆裝與維修工作容易進行;轉(zhuǎn)向器仍然可以采用通用的典型結(jié)構(gòu)齒輪齒條式轉(zhuǎn)向器;電動機距駕駛員和轉(zhuǎn)向盤近,電動機的工作噪聲和振動直接影響駕駛員;轉(zhuǎn)向軸等零件也要承受來自電動機輸出的助力
44、轉(zhuǎn)矩的作用,為使其強度足夠,必須增大受載件的尺寸;盡管電動機的尺寸不大,但因這種布置方案的電動機靠近方向盤,為了不影響駕駛員腿部的動作,在布置時仍然有一定的困難。</p><p> (2)齒輪助力式 齒輪助力式電動助力轉(zhuǎn)向機構(gòu)的電動機布置在與轉(zhuǎn)向器主動齒輪相連接的位置(圖2-3b),并通過驅(qū)動主動齒輪實現(xiàn)助力。這種布置方案的特點是:</p><p> 電動機布置在地板下方、轉(zhuǎn)向器上部,
45、工作條件比較差對密封要求較高;電動機的助力轉(zhuǎn)矩基于與轉(zhuǎn)向軸助力式相同的原因可以小些,因而電動機尺寸小,同時轉(zhuǎn)矩傳感器、減速機構(gòu)等的結(jié)構(gòu)緊湊、尺寸也小,這將有利于在整車上的布置和減小質(zhì)量;轉(zhuǎn)向軸等位于轉(zhuǎn)向器主動齒輪以上的零部件,不承受電動機輸出的助力轉(zhuǎn)矩的作用,故尺寸可以小些;電動機距駕駛員遠些,它的動作噪聲對駕駛員影響不大,但震動仍然會傳到轉(zhuǎn)向盤;電動機、轉(zhuǎn)矩傳感器、電磁離合器、減速機構(gòu)等與轉(zhuǎn)向器主動齒輪裝在一個總成內(nèi),拆裝時會因相互影
46、響而出現(xiàn)一定的困難;轉(zhuǎn)向器與典型的轉(zhuǎn)向器不能通用,需要單獨設(shè)計、制造。</p><p> (3)齒條助力式 齒條助力式電動助力轉(zhuǎn)向機構(gòu)的電動機與減速機構(gòu)等布置在齒條處(圖2-3c),并直接驅(qū)動齒條實現(xiàn)助力。這種布置方案的特點是:</p><p> 電動機位于地板下方,相比之下,工作噪聲和振動對駕駛員的影響都小些;電動機減速機構(gòu)等不占據(jù)轉(zhuǎn)向盤至地板這段空間,因而有利于轉(zhuǎn)向軸的布置,駕駛員
47、腿部的動作不會受到它們的干擾;轉(zhuǎn)向軸直至轉(zhuǎn)向器主動齒輪均不承受來自電動機的助力轉(zhuǎn)矩作用,故他們的尺寸能小些;電動機、減速機構(gòu)等工作在地板下方,條件較差,對密封要求良好;電動機輸出的助力轉(zhuǎn)矩只經(jīng)過減速機構(gòu)增扭,沒有經(jīng)過轉(zhuǎn)向器增扭,因而必須增大電動機輸出的助力轉(zhuǎn)矩才能有良好的助力效果,隨之而來的是電動機尺寸增大、質(zhì)量增加;轉(zhuǎn)向器結(jié)構(gòu)與典型的相差很多,必須單獨設(shè)計制造;采用滾珠螺桿螺母減速機構(gòu)時,會增加制造難度與成本;電動機、轉(zhuǎn)向器占用的空間
48、雖然大一些,但用于前軸負荷大,前部空間相對寬松一些的乘用車上不是十分突出的問題。</p><p> 2.2 電動助力轉(zhuǎn)向系統(tǒng)的關(guān)鍵部件</p><p> EPS主要由扭矩傳感器、車速傳感器、電動機、減速機構(gòu)和電子控制單元ECU組成。</p><p> 2.2.1 扭矩傳感器</p><p> 扭矩傳感器檢測扭轉(zhuǎn)桿扭轉(zhuǎn)變形,并將其轉(zhuǎn)
49、變?yōu)殡娮有盘柌⑤敵鲋岭娮涌刂茊卧?,是電動助力轉(zhuǎn)向系統(tǒng)的關(guān)鍵部件之一。扭距傳感器由分相器單元1、分相器單元2及扭桿組成(如圖2-4)。</p><p> 圖2-4 扭距傳感器</p><p> 轉(zhuǎn)子部分的分相器單元1固定于轉(zhuǎn)向主軸,轉(zhuǎn)子部分的分相器單元2固定于轉(zhuǎn)向傳動軸。扭轉(zhuǎn)桿扭轉(zhuǎn)后,使兩個分相器單元產(chǎn)生一個相對角度,電子控制單元根據(jù)兩個分相器的相對位置決定對EPS電動機提供多少電壓。&
50、lt;/p><p> 2.2.2 車速傳感器</p><p> 車速傳感器的功能是測量汽車的行駛速度。目前,轎車EPS控制器一般都從整車CAN總線中提取車速信號。</p><p> 2.2.3 電動機</p><p> 電動機由轉(zhuǎn)角傳感器、定子及轉(zhuǎn)子組成(如圖2-5)。</p><p> 將電動機和減速機構(gòu)布
51、置在齒條處,并直接驅(qū)動齒條實現(xiàn)助力。通過轉(zhuǎn)角傳感器檢測電動機的旋轉(zhuǎn)角度防止扭矩波動。</p><p> 圖2-5 電動機結(jié)構(gòu)</p><p> 2.2.4 減速機構(gòu)</p><p> 減速機構(gòu)采用滾珠式減速齒輪機構(gòu),將其固定在電動機的轉(zhuǎn)子上。電動機的轉(zhuǎn)動傳到減速機構(gòu),經(jīng)過滾珠及蝸桿傳到齒條軸上。滾珠在機構(gòu)內(nèi)部經(jīng)過導(dǎo)向進行循環(huán)。</p><
52、p> 2.2.5 電子控制單元</p><p> 電子控制單元(ECU)的功能是依據(jù)扭矩傳感器和車速傳感器的信號,進行分析和計算后,發(fā)出指令,控制電動機的動作。此外,ECU還有安全保護和自我診斷的功能,ECU通過采集電動機的電流、發(fā)動機轉(zhuǎn)速等信號判斷系統(tǒng)工作是否正常,一旦系統(tǒng)工作異常,電動助力被切斷;同時ECU將進行故障診斷分析,故障指示燈亮,并以故障所對應(yīng)的模式閃爍。</p><
53、p> 2.3 電動助力轉(zhuǎn)向的助力特性</p><p> 電動助力轉(zhuǎn)向的助力特性由軟件設(shè)定。通常將助力特性曲線設(shè)計成隨著汽車行駛速度Va的變化而變化,并將這種助力特性稱之為車速感應(yīng)型。圖2-6示出的車速感應(yīng)型助力特性曲線表明,助力既是作用到轉(zhuǎn)向盤上的力矩的函數(shù),同時也是車速的函數(shù)。</p><p> 圖2-6 車速感應(yīng)型助力特性</p><p> 當(dāng)車
54、速Va=0時,相當(dāng)于汽車在原地轉(zhuǎn)向,助力特性曲線的位置居其他各條曲線之上,助力強度達到最大。隨著車速Va不斷升高,助力特性曲線的位置也逐漸降低,直至車速Va達到最高車速Vamax為止,此時的助力強度已為最小,而路感強度達到最大。</p><p><b> 本章小結(jié)</b></p><p> 本章主要是介紹了電動助力轉(zhuǎn)向機構(gòu)的組成、工作原理,以及對電動助力轉(zhuǎn)向的三種
55、布置形式進行了分析對比。還有分析了電動助力轉(zhuǎn)向系統(tǒng)各主要部件的結(jié)構(gòu)及工作過程和助力特性。第3章 電動助力轉(zhuǎn)向系統(tǒng)的設(shè)計</p><p> 3.1 對動力轉(zhuǎn)向機構(gòu)的要求</p><p> ?。?)運動學(xué)上應(yīng)保持轉(zhuǎn)向輪轉(zhuǎn)角和駕駛員轉(zhuǎn)動轉(zhuǎn)向盤的轉(zhuǎn)角之間保持一定的比例關(guān)系。</p><p> (2)隨著轉(zhuǎn)向輪阻力的增大(或減小),作用在轉(zhuǎn)向盤上的手力必須增大(或減小
56、),稱之為“路感”。</p><p> ?。?)當(dāng)作用在轉(zhuǎn)向盤上的切向力時(因汽車形式不同而異),動力轉(zhuǎn)向器就開始工作。</p><p> ?。?)轉(zhuǎn)向后,轉(zhuǎn)向盤應(yīng)自動回正,并使汽車保持在穩(wěn)定的直線行駛狀態(tài)。</p><p><b> ?。?)工作靈敏。</b></p><p> ?。?)動力轉(zhuǎn)向失靈時,仍能用機械系統(tǒng)操
57、縱車輪轉(zhuǎn)向。</p><p> 3.2 齒輪齒條轉(zhuǎn)向器的設(shè)計與計算</p><p> 齒輪齒條轉(zhuǎn)向器最主要的優(yōu)點是:結(jié)構(gòu)簡單、價格低廉、質(zhì)量輕、剛性好、使用可靠;傳動效率高達90%;根據(jù)輸入齒輪位置和輸出特點不同,齒輪齒條式轉(zhuǎn)向器有四種形式:中間輸入,兩端輸出(圖3-1a);側(cè)面輸入,兩端輸出(圖3-1b);側(cè)面輸入,中間輸出(圖3-1c);側(cè)面輸入,一端輸出圖(圖3-1d)。<
58、;/p><p> 圖3-1 齒輪齒條式轉(zhuǎn)向器的四種形式</p><p> 3.2.1 轉(zhuǎn)向系計算載荷的確定</p><p> 為了保證行駛安全,組成轉(zhuǎn)向系的各零件應(yīng)有足夠的強度。欲驗算轉(zhuǎn)向系零件的強度,需首先確定作用在各零件上的力。影響這些力的主要因素有轉(zhuǎn)向軸的負荷、路面阻力和輪胎氣壓等。為轉(zhuǎn)動轉(zhuǎn)向輪要克服的阻力,包括轉(zhuǎn)向輪繞主銷轉(zhuǎn)動的阻力、車輪穩(wěn)定阻力、輪胎變
59、形阻力和轉(zhuǎn)向系中的內(nèi)摩擦阻力等。</p><p> 精確地計算出這些力是困難的。為此用足夠精確的半經(jīng)驗公式來計算汽車在瀝青或者混凝土路面上的原地轉(zhuǎn)向阻力矩MR(N·mm)。</p><p> N·mm (3-1)</p><p> 式中 f——輪胎和路面間的滑動摩擦因數(shù);</p><p>
60、——轉(zhuǎn)向軸負荷,單位為N;</p><p> P——輪胎氣壓,單位為MPa。</p><p> 作用在轉(zhuǎn)向盤上的手力Fh為:</p><p> N (3-2)</p><p> 式中 ——轉(zhuǎn)向搖臂長, 單位為mm;</p><p> ——原地轉(zhuǎn)向阻力矩, 單位為N·mm
61、</p><p> ——轉(zhuǎn)向節(jié)臂長, 單位為mm;</p><p> ——為轉(zhuǎn)向盤直徑,單位為mm;</p><p> ——轉(zhuǎn)向器角傳動比;</p><p><b> ——轉(zhuǎn)向器正效率。</b></p><p> 因齒輪齒條式轉(zhuǎn)向傳動機構(gòu)無轉(zhuǎn)向搖臂,故L1、L2不代入數(shù)值。對給定的汽車,
62、用上式計算出來的作用力是最大值。因此,可以用此值作為計算載荷。</p><p><b> 梯形臂長度的計算:</b></p><p> 輪輞直徑= 16in=16×25.4=406.4mm</p><p> 梯形臂長度=×0.8/2= 406.4×0.8/2=162.6mm (3-3)&l
63、t;/p><p><b> 取=160mm</b></p><p> 輪胎直徑的計算RT:</p><p> =406.4+0.55×225=530.2mm (3-4)</p><p><b> 取=530mm</b></p><p> 轉(zhuǎn)向橫拉
64、桿直徑的確定:</p><p><b> (3-5)</b></p><p><b> =;</b></p><p><b> 因此取=15mm</b></p><p> 初步估算主動齒輪軸的直徑:</p><p><b> ?。?-6
65、)</b></p><p><b> =140MPa</b></p><p><b> 所以取=18mm</b></p><p> 上述的計算只是初步對所研究的轉(zhuǎn)向系載荷的確定。</p><p> 3.2.2 齒輪齒條式轉(zhuǎn)向器的設(shè)計</p><p>
66、(一) EPS系統(tǒng)齒輪齒條轉(zhuǎn)向器的主要元件</p><p> ?。?)齒條是在金屬殼體內(nèi)來回滑動的,加工有齒形的金屬條。轉(zhuǎn)向器殼體是安裝在前橫梁或前圍板的固定位置上的。齒條代替梯形轉(zhuǎn)向桿系的搖桿和轉(zhuǎn)向搖臂,并保證轉(zhuǎn)向橫拉桿在適當(dāng)?shù)母叨纫允顾麄兣c懸架下擺臂平行。齒條可以比作是梯形轉(zhuǎn)向桿系的轉(zhuǎn)向直拉桿。導(dǎo)向座將齒條支持在轉(zhuǎn)向器殼體上。齒條的橫向運動拉動或推動轉(zhuǎn)向橫拉桿,使前輪轉(zhuǎn)向。</p><p
67、> 表3-1 齒條的尺寸設(shè)計參數(shù)</p><p> ?。?)齒輪是一只切有齒形的軸。它安裝在轉(zhuǎn)向器殼體上并使其齒與齒條上的齒相嚙合。齒輪齒條上的齒可以是直齒也可以是斜齒。齒輪軸上端與轉(zhuǎn)向柱內(nèi)的轉(zhuǎn)向軸相連。因此,轉(zhuǎn)向盤的旋轉(zhuǎn)使齒條橫向移動以操縱前輪。齒輪軸由安裝在轉(zhuǎn)向器殼體上的球軸承支承。</p><p> 斜齒的彎曲增加了一對嚙合齒輪參與嚙合的齒數(shù)。相對直齒而言,斜齒的運轉(zhuǎn)趨于平
68、穩(wěn),并能傳遞更大的動力。</p><p> 表3-2 齒輪軸的尺寸設(shè)計參數(shù)</p><p> ?。?)轉(zhuǎn)向橫拉桿及其端部 </p><p> 1.橫拉桿 2.鎖緊螺母3.外接頭殼體4.球頭銷5.六角開槽螺母</p><p> 6.球碗7.端蓋 8.梯形臂 9.開口銷</p><p> 圖3-2轉(zhuǎn)向橫拉桿外接
69、頭</p><p> 轉(zhuǎn)向橫拉桿與梯形轉(zhuǎn)向桿系的相似。球頭銷通過螺紋與齒條連接。當(dāng)這些球頭銷依制造廠的規(guī)范擰緊時,在球頭銷上就作用了一個預(yù)載荷。防塵套夾在轉(zhuǎn)向器兩側(cè)的殼體和轉(zhuǎn)向橫拉桿上,這些防塵套阻止雜物進入球銷及齒條中。</p><p> 轉(zhuǎn)向橫拉桿端部與外端用螺紋聯(lián)接。這些端部與梯形轉(zhuǎn)向桿系的相似。側(cè)面螺母將橫拉桿外端與橫拉桿鎖緊(見圖3-2)。</p><p&
70、gt; 注:轉(zhuǎn)向反饋是由前輪遇到不平路面而引起的轉(zhuǎn)向盤的運動。</p><p> (4)齒條調(diào)整 一個齒條導(dǎo)向座安裝在齒條光滑的一面。齒條導(dǎo)向座1和與殼體螺紋連接的調(diào)節(jié)螺塞3之間連有一個彈簧2。此調(diào)節(jié)螺塞由鎖緊螺母固定4。齒條導(dǎo)向座的調(diào)節(jié)使齒輪、齒條間有一定預(yù)緊力,此預(yù)緊力會影響轉(zhuǎn)向沖擊、噪聲及反饋(見圖3-3)。</p><p> 圖3-3齒條間隙調(diào)整裝置</p>
71、<p> 齒條斷面形狀有圓形、V形和Y形三種,本設(shè)計采用V形斷面,V形和Y形斷面齒條與圓形斷面比較,消耗的材料少,約節(jié)省20%,故質(zhì)量小;位于齒下面的兩斜面與齒條托座接觸,可用來防止齒條繞軸線轉(zhuǎn)動。在齒條與托座之間裝有用減磨材料(聚四氟乙烯)做的墊片,以減少滑動摩擦。當(dāng)車輪跳動、轉(zhuǎn)向或轉(zhuǎn)向器工作時,如在齒條上作用有能使齒條旋轉(zhuǎn)的力矩時,V形斷面齒條能防止因齒條旋轉(zhuǎn)而破壞齒輪、齒條的齒不能正確嚙合的情況出現(xiàn)。 </p&g
72、t;<p> (二) 轉(zhuǎn)向傳動比 當(dāng)轉(zhuǎn)向盤從鎖點向鎖點轉(zhuǎn)動,每只前輪大約從其正前方開始轉(zhuǎn)動30°,因而前輪從左到右總共轉(zhuǎn)動大約60°。若傳動比是1:1,轉(zhuǎn)向盤旋轉(zhuǎn)1°,前輪將轉(zhuǎn)向1°,轉(zhuǎn)向盤向任一方向轉(zhuǎn)動30°將使其前輪從鎖點轉(zhuǎn)向鎖點。這種傳動比過于小,因而轉(zhuǎn)向盤最輕微的運動將會使車輛突然改變方向。轉(zhuǎn)向角傳動比必須使前輪轉(zhuǎn)動同樣角度時需要更大的轉(zhuǎn)向盤轉(zhuǎn)角。對乘用車,推
73、薦轉(zhuǎn)向器角傳動比在17~25范圍內(nèi)選??;對商用車,在23~32范圍內(nèi)選取,這里選傳動比為18:1。即在這樣的傳動比下,轉(zhuǎn)向盤每轉(zhuǎn)動18°,前輪轉(zhuǎn)向1°。</p><p> ?。ㄈ?EPS系統(tǒng)齒輪齒條轉(zhuǎn)向器的安裝 齒輪齒條式轉(zhuǎn)向器可安在前橫梁上或發(fā)動機后部的前圍板上(見圖3-4)。橡膠隔振套包在轉(zhuǎn)向器外,并固定在橫梁上或前圍板上。齒輪齒條轉(zhuǎn)向器的正確安裝高度,使轉(zhuǎn)向橫拉桿和懸架下擺臂可平行
74、安置。齒輪齒條式轉(zhuǎn)向系統(tǒng)中磨擦點的數(shù)目減少了,因此這種系統(tǒng)輕便緊湊。大多數(shù)承載式車身的前輪驅(qū)動汽車用齒輪齒條式轉(zhuǎn)向機構(gòu)。由于齒條直接連著梯形臂,這種轉(zhuǎn)向機構(gòu)可提供好的路感。</p><p> 在轉(zhuǎn)向器與支承托架之間裝有大的橡膠隔振墊,這些襯墊有助于減少路面的噪聲、振動從轉(zhuǎn)向器傳到底盤和客艙。齒輪齒條轉(zhuǎn)向器裝在前橫梁上或前圍板上。轉(zhuǎn)向器的正確安裝對保證轉(zhuǎn)向橫拉桿與懸架下擺臂的平行關(guān)系有重要作用。為保持轉(zhuǎn)向器處在正
75、確的位置,在轉(zhuǎn)向器安裝的位置處,前圍板有所加固。</p><p> 圖3-4 轉(zhuǎn)向器的安裝位置</p><p> (四) 齒輪齒條式轉(zhuǎn)向器的設(shè)計要求 齒輪齒條式轉(zhuǎn)向器的齒輪多數(shù)采用斜齒圓柱齒輪。齒輪模數(shù)取值范圍多在2~3mm之間。主動小齒輪齒數(shù)多數(shù)在5~7個齒范圍變化,壓力角取20°,齒輪螺旋角取值范圍多為9°~15°。齒條齒數(shù)應(yīng)根據(jù)轉(zhuǎn)向輪達到最大偏轉(zhuǎn)
76、角時,相應(yīng)的齒條移動行程應(yīng)達到的值來確定。變速比的齒條壓力角,對現(xiàn)有結(jié)構(gòu)在12°~35°范圍內(nèi)變化。此外,設(shè)計時應(yīng)驗算齒輪的抗彎強度和接觸強度。</p><p> 主動小齒輪選用16MnCr5或15CrNi6材料制造,而齒條常采用45鋼制造。為減輕質(zhì)量,殼體用鋁合金壓鑄。</p><p> ?。ㄎ澹?齒輪軸和齒條的設(shè)計計算</p><p>
77、 1.選擇齒輪材料、熱處理方式及計算許用應(yīng)力</p><p> (1) 選擇材料及熱處理方式</p><p> 小齒輪16MnCr5 滲碳淬火,齒面硬度56-62HRC</p><p> 大齒輪 45鋼 表面淬火,齒面硬度52-56HRC</p><p><b> 確定許用應(yīng)力</b></p>&l
78、t;p><b> a)確定和</b></p><p> b)計算應(yīng)力循環(huán)次數(shù)N,確定壽命系數(shù)、。</p><p><b> ?。?-7)</b></p><p> 式中 ——齒輪轉(zhuǎn)速(r/min);</p><p> ——齒輪轉(zhuǎn)一周,同一側(cè)齒面嚙合的次數(shù);</p><
79、;p> ——齒輪的工作壽命(h);</p><p><b> c)計算許用應(yīng)力</b></p><p><b> 取,</b></p><p><b> ?。?-8)</b></p><p><b> ?。?-9)</b></p>
80、<p><b> 應(yīng)力修正系數(shù)</b></p><p><b> ?。?-10)</b></p><p><b> ?。?-11)</b></p><p> 2.初步確定齒輪的基本參數(shù)和主要尺寸</p><p> (1) 選擇齒輪類型</p>&
81、lt;p> 根據(jù)齒輪傳動的工作條件,選用斜齒圓柱齒輪與斜齒齒條嚙合傳動方案</p><p> (2) 選擇齒輪傳動精度等級</p><p><b> 選用7級精度</b></p><p><b> (3) 初選參數(shù)</b></p><p><b> 初選 <
82、/b></p><p><b> 按當(dāng)量齒數(shù)</b></p><p> (4) 初步計算齒輪模數(shù)</p><p> 轉(zhuǎn)矩 (3-12)</p><p> 閉式硬齒面?zhèn)鲃?,按齒根彎曲疲勞強度設(shè)計。</p><p><b> ?。?-13)</b&
83、gt;</p><p><b> =2.309</b></p><p> (5) 確定載荷系數(shù)</p><p><b> ,由,</b></p><p> 0.000696,;對稱布置,?。?lt;/p><p><b> 取</b></p&g
84、t;<p><b> 則</b></p><p> (6) 修正法向模數(shù)</p><p><b> ?。?-14)</b></p><p><b> 圓整為標(biāo)準值,取</b></p><p> 3.確定齒輪傳動主要參數(shù)和幾何尺寸</p>&l
85、t;p><b> (1) 分度圓直徑</b></p><p><b> (3-15)</b></p><p><b> (2) 齒頂圓直徑</b></p><p> =16+2×2.5(1+0)=21 (3-16)</p><p><b>
86、 (3) 齒根圓直徑</b></p><p> =16-2×2.5×1.25=9.75 (3-17)</p><p><b> (4) 齒寬b</b></p><p><b> ?。?-18)</b></p><p> 因為相互嚙合齒輪的基圓齒距必須相等,即。&
87、lt;/p><p><b> 齒輪法面基圓齒距為</b></p><p><b> 齒條法面基圓齒距為</b></p><p><b> 取齒條法向模數(shù)為</b></p><p><b> (5) 齒條齒頂高</b></p><p&
88、gt;<b> ?。?-19)</b></p><p><b> (6) 齒條齒根高</b></p><p><b> (3-20)</b></p><p><b> 法面齒距</b></p><p><b> ?。?-21)</b&
89、gt;</p><p> 4.校核齒面接觸疲勞強度</p><p><b> 查表,得</b></p><p><b> 查圖,得</b></p><p><b> 取,</b></p><p><b> 所以</b>&l
90、t;/p><p><b> =1677.6</b></p><p> 所以齒面接觸疲勞強度滿足要求。</p><p> 3.2.3 齒輪齒條轉(zhuǎn)向器轉(zhuǎn)向橫拉桿的運動分析</p><p> 當(dāng)轉(zhuǎn)向盤從鎖點向鎖點轉(zhuǎn)動,每只前輪大約從其正前方開始轉(zhuǎn)動30°,因而前輪從左到右總共轉(zhuǎn)動約60°。當(dāng)轉(zhuǎn)向輪右轉(zhuǎn)
91、30°,即梯形臂或轉(zhuǎn)向節(jié)由繞圓心轉(zhuǎn)至?xí)r,齒條左端點移至的距離為</p><p> 30°=160×cos30°=138.564</p><p> =160-138.564=21.436</p><p><b> 30°=80</b></p><p><b>
92、; ==339.3</b></p><p> =339.3-80=259.32</p><p> =340-259.32=80.7</p><p> 圖3.4 轉(zhuǎn)向橫拉桿的運動分析簡圖</p><p> 同理計算轉(zhuǎn)向輪左轉(zhuǎn)30°,轉(zhuǎn)向節(jié)由繞圓心轉(zhuǎn)至?xí)r,齒條左端點E移至的距離為</p><p&
93、gt;<b> =80 </b></p><p><b> =339.3</b></p><p> =80+339.3-340=79.3</p><p> 齒輪齒條嚙合長度應(yīng)大于</p><p> 即 =80.7+79.3=160</p>&l
94、t;p><b> 取L=200</b></p><p> 3.2.4 齒輪齒條傳動受力分析</p><p> 若略去齒面間的摩擦力,則作用于節(jié)點P的法向力Fn可分解為徑向力Fr和分力F,分力F又可分解為圓周力Ft和軸向力Fa。</p><p> =2×35000/16=4375</p><p>
95、<b> =1641.12</b></p><p><b> =1090.8</b></p><p> 3.2.5 齒輪軸的強度校核</p><p><b> 1.軸的受力分析</b></p><p> (1) 畫軸的受力簡圖。</p><p&g
96、t; (2) 計算支承反力</p><p><b> 在垂直面上</b></p><p><b> 在水平面上</b></p><p><b> (3) 畫彎矩圖</b></p><p> 在水平面上,a-a剖面左側(cè)、右側(cè)</p><p>
97、在垂直面上,a-a剖面左側(cè)</p><p><b> a-a剖面右側(cè)</b></p><p> 合成彎矩,a-a剖面左側(cè)</p><p><b> a-a剖面右側(cè)</b></p><p><b> (4) 畫轉(zhuǎn)矩圖</b></p><p> 轉(zhuǎn)
98、矩 =4375×16/2=46636.4</p><p><b> 2.判斷危險剖面</b></p><p> 顯然,a-a截面左側(cè)合成彎矩最大、扭矩為T,該截面左側(cè)可能是危險剖面。</p><p> 3.軸的彎扭合成強度校核</p><p> 由《機械設(shè)計》[4]查得,,</p&
99、gt;<p> =60/100=0.6。</p><p><b> a-a截面左側(cè)</b></p><p> 4.軸的疲勞強度安全系數(shù)校核</p><p><b> 查得, ,;</b></p><p><b> 。</b></p><
100、;p><b> a-a截面左側(cè)</b></p><p> 查得;由表查得絕對尺寸系數(shù)</p><p> 軸經(jīng)磨削加工,查得質(zhì)量系數(shù)β=1.0。則</p><p> 彎曲應(yīng)力 </p><p> 應(yīng)力幅 </p><p> 平均應(yīng)力
101、 </p><p> 切應(yīng)力 </p><p><b> 安全系數(shù)</b></p><p> 查得許用安全系數(shù)[S]=1.3~1.5,顯然S>[S],故a-a剖面安全。</p><p><b> 本章小結(jié)</b></p><p> 本章是
102、電動助力轉(zhuǎn)向系統(tǒng)的設(shè)計,主要內(nèi)容如下:</p><p> (1) 介紹了電動助力轉(zhuǎn)向系統(tǒng)的一種設(shè)計方法,這種設(shè)計方法是有其可行性的,能夠設(shè)計出符合助力要求的電動助力轉(zhuǎn)向系統(tǒng),該設(shè)計方法在現(xiàn)實中是比較合適的。</p><p> (2) 對電動助力轉(zhuǎn)向系統(tǒng)中的齒輪齒條轉(zhuǎn)向器的主要元件進行的詳細的介紹,并且給出了一些參考的轉(zhuǎn)向系參數(shù)。</p><p> (3) 根據(jù)
103、已知條件,對電動助力轉(zhuǎn)向系統(tǒng)中的齒輪齒條式轉(zhuǎn)向器進行了齒輪軸和齒條的設(shè)計計算。</p><p> 第4章 轉(zhuǎn)向傳動機構(gòu)的優(yōu)化設(shè)計</p><p> 4.1 結(jié)構(gòu)與布置</p><p> 齒輪齒條式轉(zhuǎn)向器因結(jié)構(gòu)簡單緊湊、制造工藝簡便等優(yōu)點, 既適用于整體式前軸,也適用于采用獨立懸架的斷開式前軸, 被廣泛地應(yīng)用在轎車、輕型客貨車、微型汽車等車輛上。其中, 與之
104、配用的轉(zhuǎn)向傳動機構(gòu)同傳統(tǒng)的整體式轉(zhuǎn)向梯形機構(gòu)相比有其特殊之處。</p><p> 一般來說, 這種轉(zhuǎn)向系統(tǒng)的結(jié)構(gòu)大多如圖4-1所示。轉(zhuǎn)向軸1的末端與轉(zhuǎn)向器的齒輪軸2直接相連或通過萬向節(jié)軸相連, 齒輪2與裝于同一殼體的齒條3嚙合, 外殼則固定于車身或車架上。齒條通過兩端的球鉸接頭與兩根分開的橫拉桿4、7相連, 兩橫拉桿又通過球頭銷與左右車輪上的梯形臂5、6相連。因此, 齒條3既是轉(zhuǎn)向器的傳動件又是轉(zhuǎn)向梯形機構(gòu)中三
105、段式橫拉桿的一部分。</p><p> 絕大多數(shù)齒輪齒條式轉(zhuǎn)向器都布置在軸前后方, 這樣既可避讓開發(fā)動機的下部, 又便于與轉(zhuǎn)向軸下端連接。安裝時, 齒條軸線應(yīng)與汽車縱向?qū)ΨQ軸垂直, 而且當(dāng)轉(zhuǎn)向器處于中立位置時, 齒條兩端球鉸中心應(yīng)對稱地處于汽車縱向?qū)ΨQ軸的兩側(cè)。</p><p> 1.轉(zhuǎn)向軸 2.齒輪 3.齒條 4.左橫拉桿 </p><p> 5.左梯形臂
106、6.右梯形臂 7.右橫拉桿</p><p> 圖4-1轉(zhuǎn)向系統(tǒng)結(jié)構(gòu)簡圖</p><p> 對于給定的汽車, 其軸距L、主銷后傾角β以及左右兩主銷軸線延長線與地面交點之間的距離K均為已知定值。對于選定的轉(zhuǎn)向器, 其齒條兩端球鉸中心距也為已知定值。因而在設(shè)計轉(zhuǎn)向傳動機構(gòu)時, 需要確定的參數(shù)為梯形底角γ、梯形臂長以及齒條軸線到梯形底邊的安裝距離h。而橫拉桿長則可由轉(zhuǎn)向傳動機構(gòu)的上述參數(shù)以及已
107、知的汽車參數(shù)K和轉(zhuǎn)向器參數(shù)M來確定。其關(guān)系式為: </p><p><b> (4-1)</b></p><p> 4.2 用解析法求內(nèi)、外輪轉(zhuǎn)角關(guān)系</p><p> 轉(zhuǎn)動轉(zhuǎn)向盤時, 齒條便向左或向右移動,使左右兩邊的桿系產(chǎn)生不同的運動, 從而使左右車輪分別獲得一個轉(zhuǎn)角。以汽車左轉(zhuǎn)彎為例, 此時右輪為外輪, 外輪一側(cè)的桿系運動如圖4-
108、2所示。設(shè)齒條向右移過某一行程S, 通過右橫拉桿推動右梯形臂, 使之轉(zhuǎn)過。</p><p> 圖4-2外輪一側(cè)桿系運動情況</p><p> 取梯形右底角頂點O為坐標(biāo)原點, X、Y軸方向如圖5-2所示, 則可導(dǎo)出齒條行程S與外輪轉(zhuǎn)角的關(guān)系:</p><p><b> (4-2)</b></p><p> 另外,由
109、圖4-2可知:</p><p> ∴ (4-3)</p><p> 而內(nèi)輪一側(cè)的運動則如圖4-3所示, 齒條右移了相同的行程S, 通過左橫拉桿拉動左梯形臂轉(zhuǎn)過。</p><p> 圖4-3內(nèi)輪一側(cè)桿系運動情況</p><p> 取梯形左底角頂點O1為坐標(biāo)原點,X 、Y軸方向如圖5-3所示, 則同樣可導(dǎo)出齒條行程S與內(nèi)輪轉(zhuǎn)
110、角的關(guān)系, 即:</p><p><b> (4-4)</b></p><p><b> (4-5)</b></p><p> 因此, 利用公式(4-2)便可求出對應(yīng)于任一外輪轉(zhuǎn)角的齒條行程S, 再將S代入公式(4-5)即可求出相應(yīng)的內(nèi)輪轉(zhuǎn)角。把公式(4-2)和(4-5)結(jié)合起來便可將表示為的函數(shù),記作:</p
111、><p> 反之, 也可利用公式(4-4)求出對應(yīng)于任一內(nèi)輪轉(zhuǎn)角的齒條行程S, 再將S代入公式(4-3)即可求出相應(yīng)的外輪轉(zhuǎn)角。將公式(4-4)和(4-5)結(jié)合起來可將表示為的函數(shù), 記作:</p><p> 4.3 轉(zhuǎn)向傳動機構(gòu)的優(yōu)化設(shè)計</p><p> 4.3.1 目標(biāo)函數(shù)的建立</p><p> 眾所周知, 在不計輪胎側(cè)偏時,
112、 實現(xiàn)轉(zhuǎn)向輪純滾動、無側(cè)滑轉(zhuǎn)向的條件是內(nèi)、外輪轉(zhuǎn)角具有如圖4-4所示的理想的關(guān)系, 即:</p><p><b> (4-6)</b></p><p> 式中 T——計及主銷后傾角時的計算軸距</p><p><b> L——汽車軸距</b></p><p><b> r——
113、車輪滾動半徑</b></p><p> 由式(4-6)可將理想的內(nèi)輪轉(zhuǎn)角表示為的函數(shù), 即:</p><p><b> (4-7)</b></p><p> 反之, 取內(nèi)輪轉(zhuǎn)角為自變量時, 理想的外輪轉(zhuǎn)角也可表示為的函數(shù), 即:</p><p><b> (4-8)</b><
114、;/p><p> 而由轉(zhuǎn)向梯形機構(gòu)所提供的內(nèi)、外實際轉(zhuǎn)角關(guān)系為前述的θi=F(θ0)或 θ0=Φ(θi),因此, 轉(zhuǎn)向梯形機構(gòu)優(yōu)化設(shè)計的目標(biāo)就是要在規(guī)定的轉(zhuǎn)角范圍內(nèi)使實際的內(nèi)或外輪轉(zhuǎn)角盡量地接近對應(yīng)的理想的內(nèi)或外輪轉(zhuǎn)角。為了綜合評價在全部轉(zhuǎn)角范圍內(nèi)兩者接近的精確程度, 并考慮到在最常使用的中小轉(zhuǎn)角時希望兩者盡量接近, 因此建議用兩函數(shù)的加權(quán)均方根誤差作為評價指標(biāo)。即:</p><p> (
115、4-9) </p><p><b> ?。?-10)</b></p><p> 兩式中的加權(quán)因子、為:</p><p> (4-9)、(4-10) 兩式是等價的, 可根據(jù)具體情況任取其中之一作為極小化目標(biāo)函數(shù)。</p><p> 圖4-4理想的內(nèi)、外輪轉(zhuǎn)交關(guān)系</p>&l
116、t;p> 4.3.2 設(shè)計變量與約束條件</p><p> 對于給定的汽車和選定的轉(zhuǎn)向器, 轉(zhuǎn)向梯形機構(gòu)尚有梯形臂長、底角γ和安裝距離h三個設(shè)計變量。其中底角γ可按經(jīng)驗公式先選一個初始值,然后再增加或減小, 進行優(yōu)化搜索。而及h的選擇則要結(jié)合約束條件來考慮。</p><p> 第一, 要保證梯形臂不與車輪上的零部件(如輪胎、輪輛或制動底板)發(fā)生干涉, 故要滿足:</p&
117、gt;<p> 式中 Aoy——梯形臂球頭銷中心的Y坐標(biāo)值(見圖4-3)</p><p> Aymin——車輪上可能與梯形臂干涉部位的Y坐標(biāo)值</p><p> 因,所以可知當(dāng)選定時的可取值上限為:
118、 (4-11) </p><p> 第二, 要保證有足夠的齒條行程來實現(xiàn)要求的最大轉(zhuǎn)角。即有:</p><p> 式中 Smax——最大轉(zhuǎn)角或所對應(yīng)的齒條行程</p><p> [S]——轉(zhuǎn)向器的許用齒條行程</p><p><b> 因</b></p><
119、p> 所以由公式(1)或(3)可知:</p><p> 一般來說{ }內(nèi)的數(shù)值很小, 故在估算齒條行程時可略去不計, 即可粗略地認為:</p><p> 所以當(dāng)選定時,的可取值范圍為:</p><p><b> ?。?-12)</b></p><p> 或 (4-13)</p>
120、<p> (4-12)式和(4-13)式是等價的,使用時可根據(jù)具體情況任取其中之一作為約束條件。</p><p> 第三,要保證有足夠大的傳動角。傳動角是指轉(zhuǎn)向梯形臂與橫拉桿所夾的銳角。隨著車輪轉(zhuǎn)角增大, 傳動角漸漸變小。而且對應(yīng)于同一齒條行程, 內(nèi)輪一側(cè)的傳動角總是比外輪一側(cè)的傳動角要小。由圖4-2可知:</p><p><b> 由圖4-3可知:</b
121、></p><p> 最小傳動角發(fā)生在內(nèi)輪一側(cè), 當(dāng)達到最大值時, 也達到最大值, 故此時為最小值。傳動角過小會造成有效分力過小,表現(xiàn)為轉(zhuǎn)向沉重或回正不良。對于一般平面連桿機構(gòu), 為了保證機構(gòu)傳動良好, 設(shè)計時通常應(yīng)使°, 但一般后置式轉(zhuǎn)向梯形機構(gòu)的都偏小。這是由于汽車正常行駛中多用小轉(zhuǎn)角轉(zhuǎn)向, 約有80%以上的轉(zhuǎn)角在20°以內(nèi)即使是大轉(zhuǎn)角轉(zhuǎn)向, 也是從小轉(zhuǎn)角開始, 而且速度較低, 所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 汽車電動助力轉(zhuǎn)向(eps)系統(tǒng)的設(shè)計論文
- 汽車電動助力轉(zhuǎn)向系統(tǒng)的設(shè)計
- 汽車電動助力轉(zhuǎn)向系統(tǒng)EPS設(shè)計論文.doc
- 汽車電動助力轉(zhuǎn)向系統(tǒng)EPS設(shè)計論文.doc
- 汽車電動助力轉(zhuǎn)向系統(tǒng)的設(shè)計
- 汽車電動助力轉(zhuǎn)向系統(tǒng)的設(shè)計
- 汽車電動助力轉(zhuǎn)向系統(tǒng)EPS設(shè)計論文.doc
- 汽車電動助力轉(zhuǎn)向系統(tǒng)EPS設(shè)計論文.doc
- 【汽車專業(yè)畢業(yè)論文】汽車電動助力轉(zhuǎn)向系統(tǒng)的設(shè)計
- 【汽車專業(yè)畢業(yè)論文】汽車電動助力轉(zhuǎn)向系統(tǒng)的設(shè)計
- 汽車電動助力轉(zhuǎn)向系統(tǒng)畢業(yè)論文
- 全套設(shè)計_汽車電動助力轉(zhuǎn)向系統(tǒng)的設(shè)計
- 全套設(shè)計_汽車電動助力轉(zhuǎn)向系統(tǒng)的設(shè)計
- 轉(zhuǎn)向柱式電動助力轉(zhuǎn)向系統(tǒng)設(shè)計論文
- 汽車電動助力轉(zhuǎn)向機構(gòu)的設(shè)計
- 汽車電動助力轉(zhuǎn)向系統(tǒng)設(shè)計與實現(xiàn).pdf
- 汽車電動助力轉(zhuǎn)向控制系統(tǒng)的設(shè)計.pdf
- 畢業(yè)論文--電動助力轉(zhuǎn)向系統(tǒng)的設(shè)計
- 電動汽車電動助力轉(zhuǎn)向系統(tǒng)的研究.pdf
- 汽車電動助力轉(zhuǎn)向系統(tǒng)助力特性的仿真研究.pdf
評論
0/150
提交評論