版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、<p><b> 畢 業(yè) 設(shè) 計</b></p><p><b> 外文資料翻譯</b></p><p> 系 別: 土木工程系 </p><p> 班 級: </p><p> 姓
2、 名: </p><p> 指 導(dǎo) 教 師: </p><p><b> 一.英文原文</b></p><p> A STUDY ON THE EFFECT OF GLASS FIBRE ON THE STABILITY OF BITUMINOUS
3、 MIXES</p><p> S. JAYALEKSHMI1 and N. ANJANEYULU²</p><p> ABSTRACT: Surface cracking of pavements decreases its fatigue response. The inclusion of glass fibre in bituminous mixes increase
4、s the fatigue life of pavements. In the current investigation E – glass fibre is mixed with the bituminous mixes and Marshall Stability test was conducted. The optimum bitumen content and flow value were evaluated. The i
5、nfluence of this glass fibre on durability and the engineering properties of semi dense bituminous concrete such as stability, flow, air voids in the m</p><p> KEYWORDS: Fibre Glass, Bituminous Mixes, Marsh
6、all Stability Test, Stability, Flow Value</p><p> 1. INTRODUCTION</p><p> The low tensile strength of bituminous mixes causes the pavement subjected to repeated loading to crack. The propagate
7、d cracks develop distress symptoms like raveling, undulations, rutting, cracking, bleeding, shoving and potholing of bituminous surfacing. The high traffic intensity of commercial vehicles also compounds this problem. He
8、nce, to improve the performance of the pavements, reinforcements and additives are added to the bituminous mixes. Therefore, there arises a necessity to evaluate </p><p> 2. REVIEW OF LITERATURE</p>
9、<p> Freeman (1978) found that the incorporation of polyester fibre as a reinforcement in the surface course, reduces reflective cracking. The effect was studied by varying the diameter, length and percentage of th
10、e polyester fibre. Gokhale (1987) carried out studies on reinforced bituminous surfaces with fibre glass sheet and Teflon sheets and with five types of gradations of mineral aggregates. Kim (1999) evaluated the performan
11、ce of polymer - modified (polypropylene film and a grid) bituminous mix</p><p> 3. LABORATORY STUDY</p><p> 3.1 MATERIAL PROPERTIES</p><p> 3.1.1 Glass Fibre</p><p>
12、 The properties of the E-Glass Fibre used are as listed in Table 1.</p><p> 3.1.2 Aggregate</p><p> The aggregate used in the study is of the gradation specified by the MORT&H (Specificat
13、ions for Road and Bridge Works (2001)) for 25 - 30 mm thick Semi-Dense Bituminous Concrete (Grade II). This is the most widely used surface course for highways in India. Tests conducted on the aggregate showed the materi
14、al properties indicated in Table 2.</p><p> Correct sampling (Representative sample) was ensured as correctness of the Marshall Stability Test largely depends on proper sampling. The required gradation was
15、arrived at by batch mixing by carefully proportioning two or three sizes of aggregate mixtures. The nominal size of the aggregate is 10 mm. The layer thickness is 25 mm - 30 mm. The gradation is as shown in Table 3. The
16、Semi Dense Bituminous Pavement Layers have a minimum stability of 8.2 kN at 60℃. The flow is 2 mm to 4 mm. Compaction </p><p> 3.1.3 Bitumen</p><p> The engineering properties of Bitumen used
17、in the study are listed in Table 4. Both 60/70 grade bitumen and 80/100 bitumen were used in the study.</p><p> 4. METHODOLOGY</p><p> Bitumen and aggregate form the major constituents of the
18、surface layer of a flexible pavement. The following properties were evaluated.</p><p> Bitumen: Penetration, softening point, ductility, specific gravity.</p><p> Aggregate: Crushing value, im
19、pact value, abrasion value, flakiness index, elongation index, water absorption, specific gravity.</p><p> Gradation of Semi Dense Bituminous Concrete usually used for surface layers of the flexible pavemen
20、ts in India has been selected for the present study.</p><p> All the tests were performed according to the standards. Marshall Method of mix design was carried out on glass fiber reinforced and unreinforced
21、 bituminous mixes to arrive at optimum fiber content and optimum binder content.</p><p> Following are the variables set for the present study:</p><p> Fiber percentages of 0,0.1,0.
22、2,0.3,0.4,0.5</p><p> Grade of bitumen:60/70 and 80/100</p><p> The dimensions of the glass fiber used are as follows;</p><p> Glass fiber length: 12.5mm<
23、;/p><p> Diameter of glass fiber: 5-10 μm</p><p> It is important to characterize the various pavement materials and find the optimum conditions for testing. Glass fiber available in t
24、he local market is used as reinforcement for the experimental investigation. To eliminate any possibility of errors in sampling for preparing batch mixes, a mix has been prepared that has the gradation around the mid-val
25、ue of the gradation limits given in Table 3.3. Thus, one parameter of gradation of aggregate has been fixed. Marshall Stability and flow values ha</p><p> 5. RESULTS AND DISCUSSION</p><p> For
26、 various binder contents, the values of stability, flow, unit weight, percentage voids and percentage aggregate voids were examined for the reinforced and un-reinforced bitumen. For the unreinforced case, the Marshall St
27、ability values for different bitumen contents is as shown in Figure 1 The Marshall stability value increases with the bitumen content until it reaches a peak value corresponding to 5.3% for 60/70 grade bitumen and 5.10%
28、for 80/100 grade bitumen. The variation of bulk density a</p><p> The percentage air voids vs. bitumen content variation is as shown in Figure 3.</p><p> From Figure 1, Figure 2 and Figure 3,
29、the optimum bitumen content for 60/70 grade bitumen is found to be 5.3% and that for 80/100 bitumen is found to be 5.10%.</p><p> Figure 4 and Figure 5 show the variation of bulk density with fibre content
30、 for 60/70 and 80/100 grade bitumen respectively.</p><p> At a fibre content of 0.3%, the optimum bitumen content for reinforced mix is 4.5%.For higher grades of bitumen, the stability decreases because of
31、insufficient bondage between aggregates , fibre and bitumen. The flow was found to be within the limits of 2 - 4 mm as specified by MORT&H 2001 (Specifications for Road and Bridge Works)There is a negligble change in
32、 unit weight.</p><p> 6. CONCLUSIONS</p><p> Based on the experimental investigation on glass fiber reinforced bituminous mix, the following conclusions were drawn:</p><p> About
33、 20 to 32 percent increase in stability values can be achieved by reinforcing the bituminous mix with glass fiber. Higher stability values indicate that the reinforced mixes would be less susceptible to cracking of Flexi
34、ble pavements.</p><p> From the Marshall Stability tests conducted, an optimum fiber content of 0.3% by the weight of total mix was found for a bitumen content of 4.5%.</p><p> For the optimum
35、 fiber content, the maximum stability value was found to be 17.65 kN for a bitumen content of 4.5%.</p><p> The service life of the pavement is expected to increase after reinforcing the bituminous mix with
36、 glass fiber.</p><p> From the observed improvements in stability and engineering properties, it can be concluded that the reinforced bituminous mixes are suitable in heavy traffic conditions also.</p>
37、;<p> 7. REFERENCES</p><p> 1. Freeman, R.B., Burati Jr., J.L., Amirkhanian, S.N., and Bridges Jr., W.C. (1989). “Polyester fibre in asphalt paving mixtures,” Proceedings, Association of Asphalt Pav
38、ing Technologists, Vol. 58 pp 387-409.</p><p> 2. Gokhale.Y.C, Bose.S. and Singh. M.P, (1987). “Laboratory study on flexural fatigue</p><p> characteristics of reinforced bituminous surfacings
39、,” Highway Research Bulletin, No. 32, pp 45- 56.</p><p> 3. Khanna, S.K., and Justo, C.E.G. (1992). “Highway Material Testing,” Nem Chand & Bros.Roorkee, India.</p><p> 4. Khanna, S.K., an
40、d Justo, C.E.G. (1992). “Highway Engineering,” Nem Chand & Bros., Roorkee, India.</p><p> 5. Kim, K.W., Doh, Y.S., and Lim, S. (1999). “Mode I reflection cracking resistance of strengthened asphalt conc
41、retes,” Construction and Building Materials, Vol. 13, pp. 243-251.</p><p> 6. Komatsu, T., Kikuta, H., Tuji, Y., and Muramatsu, E. (1998). “Durability assessment of geogridreinforced asphalt concrete,” Geo-
42、textiles and Geo-membranes, Vol. 16, pp 257-271.</p><p> 7. Lytton, R.L. (1989). “Use of geo-textiles for reinforcement and strain relief in asphalt concrete,” Geotextiles and Geomembranes, Vol. 8, No. 3, p
43、p. 217-237.</p><p> 8. Mourer, D.A, and Malasheskie.G.J. (1989). “Field performance of fabrics and fibres to retard reflective cracking,” Journal of Geotextiles and Geomembranes, Vol. 8, pp 239-267.</p&g
44、t;<p> 9. Ministry of Road Transport & Highways (2001), “Specifications For Road And Bridge Works”.</p><p><b> 二.中文譯文</b></p><p> 玻璃纖維對于瀝青穩(wěn)定性影響的研究</p><p>
45、 摘要:瀝青路面上的裂紋會降低其疲勞反應(yīng)。包含玻璃纖維的瀝青混合物可以提高瀝青路面的壽命。在最近的一次研究中,將無堿玻璃纖維摻在瀝青混合物中并進(jìn)行了馬歇爾穩(wěn)定度試驗。測定最佳瀝青含量和流值。本文從穩(wěn)定性、流量、混合物空隙率、礦物聚合物空隙率以及瀝青空隙率等方面介紹玻璃纖維對于半致密瀝青混凝土的耐久性及其工程適用性的影響,其穩(wěn)定性值會增長多達(dá)32%。</p><p> 關(guān)鍵詞: 玻璃纖維 瀝青混合物 馬歇爾穩(wěn)定度
46、試驗 穩(wěn)定性 流值</p><p><b> 1.引言 </b></p><p> 瀝青混合物受到低強(qiáng)度拉力致使瀝青路面反復(fù)承受荷載而開裂。路面開展的裂紋會加重裂縫,車轍,擠出瀝青鋪裝層甚至出現(xiàn)地洞。在商業(yè)化的今天,高密度的交通擁堵現(xiàn)象更加重了這一問題。因此,為了提高瀝青道路的性能,瀝青混合物中需增添額外強(qiáng)化物質(zhì)。為此,有必要對于最佳纖維含量及纖維種類做出評估。將
47、纖維均勻散至瀝青混合物表面可以起到分解應(yīng)力的作用。最近,棉花、金屬絲以及石棉等是常用的纖維品種。但由于棉花易降解,并不能用于長期加筋;金屬在滲水后易生銹;石棉則會對健康造成危害。因此玻璃纖維成為了最佳選擇。交通是任何一個國家的經(jīng)濟(jì)的生命線,因此提高道路性能可以間接促進(jìn)經(jīng)濟(jì)的發(fā)展。</p><p><b> 2.文獻(xiàn)綜述</b></p><p> 弗里曼(1978年
48、)發(fā)現(xiàn)將聚酯纖維加入物質(zhì)表面可以減少反射開裂。他研究了摻入不同直徑、長度和百分比的聚酯纖維會產(chǎn)生的不同影響。格克哈萊(1987)對用玻璃纖維板材和特氟隆薄片以及五種等級的礦物骨料摻入瀝青表面進(jìn)行強(qiáng)化的效果進(jìn)行了研究。金(1999) 評價了聚合物-改性(聚丙烯薄膜和網(wǎng)格)瀝青混合物的性能,并特別設(shè)計了增強(qiáng)技術(shù)應(yīng)對典型的瀝青路面表層的反射開裂。小松(1998)發(fā)明的車輪跟蹤試驗方法通常會用于檢驗塑料流阻的耐久性,及增強(qiáng)瀝青混合物的抗裂性能。
49、所用原材料是一種高強(qiáng)度、高模量纖維甲醛。利頓 (1989)使用土工織物來加強(qiáng)瀝青加鋪層,緩解壓力層并密封。但利用土工織物加固會引起由與荷載和熱收縮引發(fā)的反射裂紋。莫伊爾雷(1989)之后明確了各種能夠延緩反射裂縫的瀝青加鋪層的土工織物和纖維。道路壽命和車轍阻力也得到改善。現(xiàn)在市場上可買到最便宜的玻璃纖維就是無堿玻璃纖維,這一材料也同樣應(yīng)用于本次加固瀝青混合物的研究中。</p><p><b> 3.實
50、驗室研究</b></p><p><b> 3.1 材料性能</b></p><p> 3.1.1 玻璃纖維</p><p> 表1為無堿玻璃纖維的性能。</p><p> 表1 玻璃纖維的性能</p><p><b> 3.1.2 骨料</b>&l
51、t;/p><p> 研究中使用的骨料為MORT&H《道路與橋梁工程規(guī)程》(2001)中的分級規(guī)格中的25 - 30毫米厚的半致密性瀝青混凝土(II級)。這一材料是印度高速公路中最為廣泛使用的,表2顯示了該材料的性能。</p><p><b> 表2 骨料性能</b></p><p> 正確的采樣(代表性試樣)能確保馬歇爾穩(wěn)定度試驗的
52、正確性,通過仔細(xì)攪拌配料使兩三種不同粒徑的集料混合物達(dá)到所需的層次分級,集料的公稱直徑為10毫米,層厚約為25毫米-30毫米,表3為分級情況。瀝青路面半致密層的最低穩(wěn)定性為60℃時加壓8.2 kN,浮動值為2mm至4mm。在樣本的每面的捶擊數(shù)75次得到的壓實值,空隙率是3%-5%,而瀝青填充率為65%-78%。</p><p><b> 3.1.3瀝青</b></p><
53、;p> 該研究中瀝青的工程性能列在表4。研究中均使用了60/70與80/100兩種型號的瀝青。</p><p> 表3 路層混凝土半致密性瀝青的成分</p><p><b> 表4 瀝青性能</b></p><p><b> 4.方法</b></p><p> 瀝青和骨料是柔性路面
54、表層的組成成分,本研究將對下列性能進(jìn)行評估:</p><p> 瀝青:針入度、軟化點、延度、比重。</p><p> 骨料:沖擊值、壓碎指標(biāo)、磨損值、薄片指數(shù)、針狀指數(shù)、吸水率、比重。</p><p> 當(dāng)前研究中的混凝土等級為用于印度韌性道路層半致密性瀝青表面的混凝土等級。</p><p> 所有的試驗都符合標(biāo)準(zhǔn),運用馬歇爾配合比設(shè)
55、計方法研究玻璃纖維增強(qiáng)非加強(qiáng)瀝青混合物的韌性并從中得到最佳纖維和最佳粘合劑的含量。</p><p> 以下是本研究中所設(shè)置的變量:纖維百分比:0,0.1,0.2,0.3,0.4,0.5瀝青等級:60/70和80/100所用的玻璃纖維的尺寸如下:</p><p> 玻璃纖維長度:12.5毫米玻璃纖維直
56、徑:5-10微米</p><p> 顯示各種路面材料的特征并找到最佳測試條件這一點非常重要。從當(dāng)?shù)厥袌錾喜少彽牟AЮw維被用作加固實驗檢測的材料。為了準(zhǔn)備批量混合而消除產(chǎn)生任何取樣誤差的可能,必須事先準(zhǔn)備一個圍繞中期層次的灰度值范圍,具體情況參見表3.3。 因此,對骨料級配參數(shù)已被修正。馬歇爾穩(wěn)定度和流量值被用來作為對路面強(qiáng)度的評估參數(shù)。馬歇爾穩(wěn)定性試驗在對不同比例的纖維進(jìn)行分析后,得出最佳比例的玻璃纖維
57、,從而保證有最強(qiáng)的穩(wěn)定性并且是規(guī)格限制內(nèi)流量。</p><p><b> 5.結(jié)果與討論</b></p><p> 對于各種參量內(nèi)容,如粘結(jié)劑含量、穩(wěn)定性、流量、單位重量、空洞百分比比值和未加固的瀝青材料間隙檢查。對于未加固的情況,針對不同的瀝青馬歇爾穩(wěn)定值的內(nèi)容如圖1所示:馬歇爾穩(wěn)定性隨著瀝青含量的增加,達(dá)到一個峰值時對應(yīng)的穩(wěn)定值分別為5.3%的60/70級瀝青
58、和5.10%的80/100級瀝青。對散裝密度的變化與瀝青含量的空隙百分比也會影響實驗結(jié)果。大容量密度與瀝青含量變化情況繪制于圖2。</p><p> 圖1 馬歇爾穩(wěn)定性和瀝青含量</p><p> 圖2 流量對比瀝青含量</p><p> 空隙率百分比和瀝青含量變化如圖3:</p><p> 圖3 散裝密度與瀝青含量</p
59、><p> 從圖1、圖2和圖3中可看出,對60/70級瀝青的最佳瀝青含量是5.3%,而80/100瀝青是5.10%。</p><p> 圖4 空隙率和瀝青含量的對比</p><p> 圖5 纖維百分比(60/70)</p><p> 圖5和圖6顯示的是散裝密度和纖維含量變化分別為60/70和80/100級的瀝青。</p>
60、<p> 圖6 穩(wěn)定性與纖維百分比(80/100)</p><p> 在纖維含量為0.3%,最佳的加固瀝青含量為4.5%。對于高級瀝青,穩(wěn)定性適當(dāng)降低,由于骨料纖維和瀝青之間的束縛不緊密。該浮動限制在2- 4毫米,這是2001年由MORT&H公司所指定的(道路與橋梁工程的規(guī)格允許有一個單位重量的變化)。</p><p><b> 6.結(jié)論</b&
61、gt;</p><p> 在對玻璃纖維增強(qiáng)瀝青混合料的實驗研究的基礎(chǔ)上,得出以下結(jié)論: </p><p> 通過玻璃纖維加強(qiáng)的瀝青混合物可增加約20%至32%的穩(wěn)定性。穩(wěn)定性值越高表明該種混合物將不易造成柔性路面開裂。 從馬歇爾穩(wěn)定性試驗顯示最佳纖維含量是總重量的0.3%,是瀝青含量的4.5%。</p><p> 對于最佳纖維含量,對于含量為4.5%的
62、瀝青而言,最高穩(wěn)定值是17.65kN。</p><p> 將瀝青與玻璃纖維混合后預(yù)計將增加該路面的使用壽命。從穩(wěn)定性和改善工程性質(zhì)的角度觀察,可以得出增強(qiáng)瀝青混合料在大交通量條件下也同樣適用。</p><p><b> 7.參考文獻(xiàn)</b></p><p> [1] Freeman, R.B., Burati Jr., J.L., Ami
63、rkhanian, S.N., and Bridges Jr., W.C. (1989). “Polyester fibre in asphalt paving mixtures,” Proceedings, Association of Asphalt Paving Technologists, Vol. 58 pp 387-409.</p><p> [2] Gokhale.Y.C, Bose.S. and
64、 Singh. M.P, (1987). “Laboratory study on flexural fatigue</p><p> characteristics of reinforced bituminous surfacings,” Highway Research Bulletin, No. 32, pp 45- 56.</p><p> [3] Khanna, S.K.,
65、 and Justo, C.E.G. (1992). “Highway Material Testing,” Nem Chand & Bros.Roorkee, India.</p><p> [4] Khanna, S.K., and Justo, C.E.G. (1992). “Highway Engineering,” Nem Chand & Bros., Roorkee, India.&
66、lt;/p><p> [5] Kim, K.W., Doh, Y.S., and Lim, S. (1999). “Mode I reflection cracking resistance of strengthened asphalt concretes,” Construction and Building Materials, Vol. 13, pp. 243-251.</p><p&g
67、t; [6] Komatsu, T., Kikuta, H., Tuji, Y., and Muramatsu, E. (1998). “Durability assessment of geogridreinforced asphalt concrete,” Geo-textiles and Geo-membranes, Vol. 16, pp 257-271.</p><p> [7] Lytton, R
68、.L. (1989). “Use of geo-textiles for reinforcement and strain relief in asphalt concrete,” Geotextiles and Geomembranes, Vol. 8, No. 3, pp. 217-237.</p><p> [8] Mourer, D.A, and Malasheskie.G.J. (1989). “Fi
69、eld performance of fabrics and fibres to retard reflective cracking,” Journal of Geotextiles and Geomembranes, Vol. 8, pp 239-267.</p><p> [9]Ministry of Road Transport & Highways (2001), “Specification
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文文獻(xiàn)及譯文--玻璃纖維對于瀝青穩(wěn)定性影響的研究
- 碳纖維-玻璃纖維格柵增強(qiáng)瀝青混凝土加熱電阻穩(wěn)定性研究.pdf
- 玻璃纖維外文翻譯
- 高穩(wěn)定性的尼龍66-玻璃纖維增強(qiáng)復(fù)合材料研究.pdf
- 纖維瀝青混合料水穩(wěn)定性試驗
- 外文翻譯--中間相瀝青的結(jié)構(gòu)和穩(wěn)定性的研究(節(jié)選)
- 外文翻譯(英文)--中間相瀝青的結(jié)構(gòu)和穩(wěn)定性的研究
- 外文翻譯--中間相瀝青的結(jié)構(gòu)和穩(wěn)定性的研究(節(jié)選)
- 鹽分對纖維瀝青混合料水穩(wěn)定性影響的試驗研究.pdf
- 纖維瀝青混凝土加筋穩(wěn)定性能研究.pdf
- 外文翻譯(中文)--中間相瀝青的結(jié)構(gòu)和穩(wěn)定性的研究(節(jié)選)
- 外文翻譯(中文)--中間相瀝青的結(jié)構(gòu)和穩(wěn)定性的研究(節(jié)選).doc
- 外文翻譯(英文)--中間相瀝青的結(jié)構(gòu)和穩(wěn)定性的研究(節(jié)選).pdf
- 聚酯纖維對透水瀝青混合料水穩(wěn)定性影響.pdf
- 外文翻譯(中文)--中間相瀝青的結(jié)構(gòu)和穩(wěn)定性的研究(節(jié)選).doc
- 外文翻譯(英文)--中間相瀝青的結(jié)構(gòu)和穩(wěn)定性的研究(節(jié)選).pdf
- [雙語翻譯]邊坡穩(wěn)定性外文翻譯--鐵路路堤的邊坡穩(wěn)定性
- 玻璃纖維瀝青混合料路用性能研究.pdf
- 巖石、玻璃與添加劑對瀝青混合料穩(wěn)定性影響的研究.pdf
- [雙語翻譯]邊坡穩(wěn)定性外文翻譯--鐵路路堤的邊坡穩(wěn)定性(英文)
評論
0/150
提交評論